PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Том LVI 2019

Marta KOLODII1, Oleg VERESHCHAGIN2, Мykhaylo YATSYSHYN1, Oleksandr RESHETNYAK1

1Ivan Franko National University of Lviv Kyryla and Mefodia Str. 6, 79005 Lviv, Ukraine
2SE Tylose GmbH & Co. KG, Wiesbaden, Germany

DOI: https://doi.org/10.37827/ntsh.chem.2019.56.152

THERMAL ANALYSIS OF POLYANILINE AND CELLULOSE/POLYANILINE COMPOSITES, SYNTHESIZED IN THE WATER SOLUTIONS OF ORGANIC ACIDS

The samples of polyaniline doped by formic, acetate and citric acids (PАn-FА, PАn-АА and PАn-CА) were synthesized by chemical oxidative polymerization of aniline using ammonium peroxodisulphate in aqueous 0,5 M solutions of these acids. The composites of the microfibril cellulose with polyaniline doped with abovementioned acids (Cel/PАn-FА, Cel/PАn-AА and Cel/PАn-CА) were synthesized using the same technique. Thermal analysis of the powder samples was investigated by using Q 1500-D derivatograph in the temperature range of 20°С to 900°С with a heating rate of 10 degrees/min in air atmosphere. Fourier-transform infrared spectroscopy (FTIR) was carried out using spectrophotometer NICOLET IS 10 ATR, in the wavenumber range of 4 000 to 650 сm–1 with scan-step of 4 сm–1. For establishment of resistance of the tablet samples 10-fold measurement was performed with the assistance of Rigol DM 3 068. Thermal properties of these samples were investigated and compared with the assistance of thermogravimetric analysis. According to results has been established three stage of the weight loss of polyaniline-organic acid samples and five stage of the weight loss of cellulose/polyaniline-organic acid samples due to additional tvo stage thermal destruction of cellulose. The stages of thermo-oxidative destruction, the temperature limits of the stages and the rate of mass loss during destruction of the samples of polyaniline and cellulose/polyaniline composites were determined by thermal analysis method. It has been shown that thermo-destruction of cellulose in abovementioned composites occurs at much lower temperatures than for pure cellulose. Generally, the thermal destruction of most polyaniline samples (PАn-FА, PАn-АА) to 98‒99% occurs under the temperatures to 800°С, while for the PАn-CА sample - to 850°С. The decomposition of cellulose/polyaniline-organic acid composites completes to 650°С. According to FTIR spectra, we come to conclusion that between the components of the composites exist H-bonding. Electrical conductivity of the composites has shown, that they are in the state form emeraldine salts of polyaniline and abovementioned organic acids.

Keywords: polyaniline, cellulose, organic acid, composites, thermal analysis, structure.

References:

  1. Bhadra S., Khastgir D., Singha N. K., Lee J. H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009. Vol. 34(8). P. 783–810. (DOI: 10.1016/j.progpolymsci.2009.04.003)
  2. Nanostructured Conductive Polymers. Ed. Eftekhari A. Wiley. 2010. 810 p.
  3. Ćirić-Marjanović G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013. Vol. 177. P. 1–47. (DOI: 10.1016/j.synthmet.2013.06.004)
  4. Du X., Zhang Z., Liu W. Deng Y. Nanocellulosebased conductive materials and their emerging applications in energy devices – A review. Nano Energy. 2017. P. 1–59. (DOI: 10.1016/j.nanoen.2017.04.001).
  5. Guimard N. K., Gomez N., Schmidt C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007. Vol. 32. P. 876–921. (DOI: 10.1016/j.progpolymsci.2007.05.012)
  6. Long Y.–Z., Li M.–M., Changzhi Gu C. et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011. Vol. 36. P. 1415–1442. (DOI: 10.1016/j.progpolymsci.2011.04.001)
  7. Song E., Choi J.–W. Conducting Polyaniline Nanowire and Its Applications in Chemire-sistive Sensing. Nanomater. 2013. Vol. 3. P. 498–523. (DOI: 10.3390/nano3030498)
  8. Sen T., Mishra S., Shimpi N. G. Synthesis and sensing applications of polyaniline nanocomposites: a review. RSC Adv. 2016. Vol. 6. P. 42196–42222. (DOI: 10.1039/c6ra03049a)
  9. Stejskal J., Trchová M., Bober P. et al. Conducting Polymers: Polyaniline. Encyclopedia of Polymer Science and Technology. John Wiley & Sons, Inc. 2015. P. 1–44. (DOI: 10.1002/0471440264.pst640)
  10. Siró I., Plackett D. Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose. 2010. Vol. 17. P. 459–494. (DOI: 10.1007/s10570-010-9405-y)
  11. Jawaid M., Khalil A. H. P. S. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohyd. Polym. 2011. Vol. 86. P. 1–18. (DOI: 10.1016/j.carbpol.2011.04.043)
  12. Casado U. M., Aranguren M. I., Marcovich N. E. Preparation and characterization of conductive nanostructured particles based on polyaniline and cellulose nanofibers. Ultrason. Sonochem. 2014. Vol. 21, Is. 5. P. 1641–1648. (DOI: 10.1016/j.ultsonch.2014.03.012)
  13. Borsoi C., Zattera A. J., Ferreira C. A. Effect of cellulose Nanowhiskers Functionalization with Polyaniline for Epoxy Coatings. Appl. Surf. Sci. 2015. Vol. 364. P. 124–132. (DOI: 10.1016/j.apsusc.2015.12.140)
  14. Wang Z., Carlsson D. O., Tammela P. et al. Surface Modified Nanocellulose Fibers Yield Conducting Polymer-Based Flexible Supercapacitors with Enhanced Capacitances. ACS Nano. 2015. Vol. 9(7). P. 7563–7571. (DOI: 10.1021/acsnano.5b02846)
  15. Dubey N., Kushwaha C. S., Shukla S. K. A review on electrically conducting polymer bionanocomposites for biomedical and other Applications. Inter. J. Polym. Mater. Polym. Biomat. 2019. P. 1–19. (DOI: 10.1080/00914037.2019.1605513)
  16. Joffre T., Wernersson E. L. G., Miettinen A. et al. Swelling of cellulose fibres in composite materials: Constraint effects of the surrounding matrix. Compos. Sci. Technol. 2013. Vol. 74. P. 52–59. (DOI: 10.1016/j.compscitech.2012.10.006)
  17. Barik A., Solanki P. R., Kaushik A., et al. Polyaniline–Carboxymethyl Cellulose Nanocomposite for Cholesterol Detection. J. Nanosci. Nanotechnol. 2010. Vol. 10, No. 10. P. 6479–6488. (DOI: 10.1166/jnn.2010.2511)
  18. Liu M. K., He S. X., Fan W. et al. Filter paper-derived carbon fiber/polyaniline composite paper for high energy storage applications. Compos. Sci. Technol. 2014. Vol. 101. P. 152–158. (DOI: 10.1016/j.compscitech.2014.07.008)
  19. Long C. L., Qi D., Wei T. et al. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 2014. Vol. 24. P. 3953–3961. (DOI: 10.1002/adfm.201304269)
  20. Cerqueira D. A., Valente A. J. M., Filho G. R., Burrows H. D. Synthesis and properties of polyaniline–cellulose acetate blends: The use of sugarcane bagasse waste and the effect of the substitution degree. Carbohyd. Polym. 2009. Vol. 78. P. 402–408. (DOI: 10.1016/j.carbpol.2009.04.016)
  21. da Oliveira R. S., Bizeto M. A., Camilo F. F. Production of Self-Supported Conductive Films based on Cellulose, Polyaniline and Silver Nanoparticles. Carbohyd. Polym. 2018. Vol. 199. P. 84–91. (DOI: 10.1016/j.carbpol.2018.06.049)
  22. Stejskal J., Trchová M., Sapurina I. Flame-retardant effect of polyaniline coating deposited on cellulose fibers. J. Appl. Polym. Sci. 2005. Vol. 98. P. 2347–2354. (DOI: 10.1002/app.22144)
  23. Wu X. N., Qian X. R., An X. H. Flame retardancy of polyaniline-deposited paper composites prepared via in situ polymerization. Carbohyd. Polym. 2013. Vol. 92. P. 435–440. (DOI: 10.1016/j.carbpol.2012.09.032)
  24. Yu J., Zhou T., Z. Pang Z., We Q. Flame retardancy and conductive properties of polyester fabrics coated with polyaniline. Text. Res. J. 2016. Vol. 86. P. 1171–1179. (DOI: 10.1177/0040517515606360)
  25. Sukhara A., Vereshchagin O., Yatsyshyn М. Synthesis and properties of the composites cellulose/polyaniline, citric acid doped. Visnyk Lviv Univ., Ser. Chem. 2018. Vol. 59. Pt. 2. P. 414−424. (DOI: 10.30970/vch.5902.414)
  26. Yatsyshyn M. M., Makogon V. M., Reshetnyak O. V., Błażejowski J. Chapter 14. Structure and Thermal Stability of Silica–Glauconite/Polyaniline Composite. Computational and Experimental Analysis of Functional Materials / Oleksandr V. Reshetnyak, Gennady E. Zaikov (Eds.) [Series: AAP Research Notes on Polymer Engineering Science and Technology]. Toronto, New Jersey: Apple Academic Press, CRC Press (Taylor & Francis Group). 2017. P. 497-520. (DOI: 10.1201/9781315366357-14)
  27. Paterno L. G., Manolache S., Denes F. Synthesis of polyaniline-type thin layer structures under low-pressure RF-plasma conditions. Synth. Met. 2002. Vol. 130. P. 85–97. (DOI: 10.1016/S0379-6779(02)00102-9)
  28. Ding X., Han D., Zhijuan Wang Z. et al. Micelle-assisted synthesis of polyaniline/magnetite nanorods by in situ self-assembly process. J. Colloid Interf. Sci. 2008. Vol. 320. P. 341–345. (DOI: 10.1016/j.jcis.2008.01.004)
  29. Bhadra S., Singha N. K., Khastgir D. Effect of aromatic substitution in aniline on the properties of polyaniline. Eur. Polym. J. 2008. Vol. 44. P. 1763–1770. (DOI: 10.1016/j.eurpolymj.2008.03.010)
  30. Dou Y.-Q., Zhai Y., Zeng F. et al. Encapsulation of polyaniline in 3-D interconnected mesopores of silica KIT-6. J. Colloid Interf. Sci. 2010. Vol. 341. P. 353–358. (DOI: 10.1016/j.jcis.2009.09.015)
  31. Wang S.-X., Tan Z.-C., Li Y.-S. A Kinetic Analysis of Thermal Decomposition of Polyaniline/ZrO2 Composite. J. Therm. Anal. Calorim. 2008. Vol. 92, Is. 2. P. 483–487 (DOI: 10.1007/s10973-007-8356-5).
  32. Qi Y.-N., Xu F., Sun L.-X. Thermal Stability and Glass Transition Behavior of PANI/α-Al2O3 Composites. J. Therm. Anal. Calorim. 2008. Vol. 94, Is. 2. P. 553–557 (DOI: 10.1007/s10973-007-8626-2).
  33. Karim M. R., Yeum J. H., Lee M. S., Lim K. T. Preparation of conducting polyaniline/TiO2 composite submicron-rods by the c-radiolysis oxidative polymerization method. React. Funct. Polym. 2008. Vol. 68. P. 1371–1376. (DOI: 10.1016/j.reactfunctpolym.2008.06.016)
  34. Vohra S., Kumar M., Mittal S. K., Singla M. L. Thermal and electrical behavior of silver chlo ri de/polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide. J Mater Sci: Mater Electron. 2013. Vol. 24. P. 1354–1360. (DOI: 10.1007/s10854-012-0933-0)
  35. Ding L., Wang X., Gregory R. V. Thermal properties of chemically synthesized polyaniline (EB) powder. Synth. Met. 1999. Vol. 104. P. 73–78. (DOI: 10.1016/S0379-6779(99)00035-1 )
  36. Lu X., Tan C. Y., Xu J., He C. Thermal degradation of electrical conductivity of polyacrylic acid doped polyaniline: effect of molecular weight of the dopants. Synth. Met. 2003. Vol. 138. P. 429–440. (DOI: 10.1016/S0379-6779(02)00471-X)
  37. Kulhánková L., Tokarský J., Matějka V. et al. Electrically conductive and optically transparent polyaniline/montmorillonite nanocomposite thin films. Thin Solid Films. 2014. (DOI: 10.1016/j.tsf.2014.05.006)
  38. Doca N., Vlase G., Vlase T. et al. TG, EGA and kinetic study by non-isothermal decomposition of a polyaniline with different dispersion degree. J. Therm. Anal. Calorim. 2009. Vol. 97. P. 479–484. (DOI: 10.1007/s10973-009-0217-y)
  39. Dhawale D.S., Salunkhe R.R., Jamadade V.S. et al. Hydrophilic polyaniline nanofibrous architecture using electrosynthesis method for supercapacitor application. Curr. Appl. Phys. 2010. Vol. 10. P. 904–909. (DOI: 10.1016/j.cap.2009.10.020)
  40. Al-Ahmed A., Mohammad F., Ab. Rahman M. Z. Composites of polyaniline and cellulose acetate: preparation, characterization, thermo-oxidative degradation and stability in terms of DC electrical conductivity retention. Synth. Met. 2004. Vol. 144. P. 29–49. (DOI: 10.1016/j.synthmet.2004.01.007)
  41. Chen W., Yu H., Liu Y. Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohyd. Polym. 2011. Vol. 86. P. 453–461. (DOI: 10.1016/j.carbpol.2011.04.061)
  42. Stetsiv Yu., Vereshchagin O., Yatsyshyn M., et al. Mechanochemical Synthesis and Composite Properties Polyanіline/Cellulosе. Visnyk Lviv Univ., Ser. Chem. 2019. Is. 60, Pt. 2. P. 402–413. (DOI: 10.30970/vch.6002.402)
  43. Qiu B., Xu C., Sun D. et al. Polyaniline coating with various substrates for hexavalent-chromium removal. Appl. Surf. Sci. 2015. Vol. 334. P. 7–14. (DOI: 10.1016/j.apsusc.2014.07.039)

How to Cite

Kolodii M., Vereshchagin O., Yatsyshyn М., Reshetnyak O. THERMAL ANALYSIS OF POLYANILINE AND CELLULOSE/POLYANILINE COMPOSITES, SYNTHESIZED IN THE WATER SOLUTIONS OF ORGANIC ACID Proc. Shevchenko Sci. Soc. Chem. Sci. 2019 Vol. LVI. P. 152-168.

Download the pdf