PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Archive / Том LVI 2019

Olha ZHAK

Ivan Franko National University of Lviv Kyryla and Mefodia Str. 6, 79005 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2019.56.144

NEW TERNARY HAFNIUM PHOSPHIDE WITH THE Fe2P CRYSTAL STRUCTURE

Crystal structure of the new ternary phosphide Hf3Ni3.6P2.4 has been studied by powder X-ray method: Fe2P type structure, space group Р-62m, а = 0.62592(2) nm, c = 0.37147(1) nm, RI = 0.0502, RP = 0.0768, RwP = 0.1073. Starting materials for the synthesis of the samples were powders of hafnium, nickel, and red phosphorus, all with the purity not less than 99.98 mass %. Mixtures of the constituents in the certain ratio were pressed into pellets. The pellets were placed within evacuated fused silica tubes which were slowly heated to 1070 K (100 K per day), kept at this temperature during 100–150 h, and then cooled to room temperature by shutting off the furnace. The sintered samples were grounded, pressed again into pellets, and then were annealed within evacuated fused silica tubes at 1070 K during 1000–1200 h, and then quenched in cold water without breaking the tubes. All samples have been studied by X-ray phase and structural analysis using STOE STADI P diffractometer (Cu Kα1-radiation). For all calculations the WinCSD software was used. Crystal structure of the new ternary phosphide Hf3Ni3.6P2.4 was found to be isotypic with the earlier known ternary phosphide of zirconium and nickel Zr3Ni4.5P1.5 (Fe2P - type structure). In the Hf3Ni3.6P2.4 structure the crystallographic sites 3f, 3g and 2d are occupied by the Hf, Ni and P atoms, respectively, whereas in the 1a position there is statistic mixture of the Ni and P atoms (G = 64% Ni + 36% P). Interatomic distances in the structure of the Hf3Ni3.6P2.4 phosphide are nearly the same as the respective sum of the atomic radii of the components. The shortest distances are observed between atoms of hafnium and statistic mixture of Ni and P atoms (δ = 0. 24886(3) nm), though distances reducing in this case are less than 10 % of the sum of the respective atomic radii values, that indicates the predominance of the metallic type of bonding. The phosphide Hf3Ni3.6P2.4 belongs to the family of the flat hexagonal two-net structures with a metal/non-metal ratio equal or close to 2. The general chemical formula of the homologous series may be written as Rn(n-1)M(n+1)(n+2)Xn(n+1)+1, where R, M, X – atoms of the largest, middle and smallest size, respectively, and in general case the compound composition could be described by the formula (R,M)2X. Structure of the Fe2P-type is the first member of this series with n = 1, and the structural unit has the composition M3X. The two composition units are shifted with respect to each other by 1/2 of the trigonal prism height along c-direction. Earlier known phosphides Hf2Ni12P7 and Hf6Ni20P13 are the second and third members of the homologous series.

Keywords: crystal structure, nickel, hafnium, phosphide.

References:

  1. Ломницкая Я.Ф., Кузьма Ю.Б. Новые фосфиды гафния со структурой типа TiNiSi. Укр. хим. журн. 1981. Т. 47. С. 103–104.
  2. Kleinke H., Franzen H.F. Synthesis, crystal structure, and properties of HfM'P (M' = Fe, Co, Ni) in comparison to ZrNiP. Z. Anorg. Allg. Chem. 1996. Vol. 622. P. 1893–1900. (https://doi.org/10.1002/zaac.19966221114).
  3. El Ghadraoui E.H., Pivan J.Y., Guerin R. et al. Preparation, structure, and properties of new ternary arsenides and phosphides: Ni3Zr2P3, Ni3Zr2As3, Ni3Hf2P3, and Ni3Hf2As3. J. Less-Common Met. 1985. Vol. 105. P. 187–196. (https://doi.org/10.1016/0022-5088(85)90406-0).
  4. Pivan J.Y., Guerin R., El Ghadraoui E.H., et al. Tetrahedral Ni4 clusters in a marcasite-type host structure: The preparation and crystal structure of MNi4X2 compounds (X = P, As; M = Zr, Hf, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). J. Less-Common Met. 1989. Vol. 153. P. 285–292. (https://doi.org/10.1016/0022-5088(89)90123-9).
  5. Kleinke H., Franzen H.F. Structure and properties of the new phosphides M2M'P (M = Zr, Hf; M' = Co, Ni) and their relations to ZrNi and HfNi. J. Solid State Chem. 1997. Vol. 131. P. 379–386. (https://doi.org/10.1006/jssc.1997.7405).
  6. Kleinke H., Franzen H.F. Hf2NiP: The planned modification of an intermetallic phase by (formal) substitution of nickel by phosphorus. Angew. Chem. 1997. Vol. 36. P. 513–516. (https://doi.org/10.1002/anie.199705131).
  7. Kleinke H., Franzen H.F. HfNixP – Intercalation of Ni into the three-dimensional compound HfP. Z. Anorg. Allg. Chem. 1996. Vol. 622. P. 1342–1348. (https://doi.org/10.1002/zaac.19966220812).
  8. Kleinke H., Franzen H.F. Intercalation of nickel into the new ternary phosphide Hf5Ni3P. Chem. Mater. 1997. Vol. 9. P. 1030–1035 (https://doi.org/10.1021/cm960620s).
  9. Ломницкая Я.Ф., Кузьма Ю.Б. Новые фосфиды со структурой типа Nb4CoSi. Изв. АН СССР. Неорган. материалы. 1980. Т. 16. С. 1022–1024.
  10. Жак О., Швед О., Бабіжецький В. Кристалічна структура нового фосфіду Hf2Ni12P7. Вісн. Львів. ун-ту. Серія хім. 2014. Вип. 55. Ч. 1. С. 93–99.
  11. Жак О., Дзевенко М., Швед О. Новий фосфід Hf6Ni20Р13 та його кристалічна структура. Праці НТШ. Хімічні науки. 2016. Т. XLIV. С. 14–20.
  12. Ломницька Я.Ф., Кузьма Ю.Б. Взаємодія компонентів у системі Zr–Ni–P. Вісн. Львів. ун-ту. Сер. xім. 1991. Вип. 31. С. 24–28.
  13. Ломницкая Я.Ф., Кузьма Ю.Б. Новые фосфиды со структурой типа Nb4CoSi. Изв. АН СССР. Неорган. материалы. 1980. Т. 16. С. 1022–1024.
  14. Kleinke H., Franzen H. F. Zr9Co2P4 and Zr9Ni2P4: a new 3D structure type, consisting of edge- and vertex-condensed Zr6 octahedra. Inorg. Chem. 1996. Vol. 35. P. 5272–5277. (https://doi.org/10.1021/ic960214a).
  15. Жак О. Уточнення кристалічної структури сполуки ZrNi0.8P2-х. Праці НТШ. Хімічні науки. 2017. Т. XLVIII. С. 90–97.
  16. Wiberg N. Lehrbuch der Anorganischen Chemie. Berlin–New-York: Walter de Gruyter, 1995. P. 1838–1841.
  17. Akselrud L., Grin Yu. WinCSD: software package for crystallographic calculations (Version 4). J. Appl. Crystallogr. 2014. Vol. 47. P. 803–805. (https://doi.org/10.1107/S1600576714001058).
  18. Ломницкая Я. Ф. Кристаллическая структура соединения Zr3Ni4P2. Вестник Львов. ун-та. Серия хим. 1984. Вып. 25. С. 23–24.
  19. Gelato L.M., Parthé E. STRUCTURE TIDY – a Computer Program to Standardize Crystal Structure Data. J. Appl. Crystallogr. 1987. Vol. 20. P. 139–143. (https://doi.org/10.1107/S0021889887086965).
  20. Kuz’ma Yu.B., Chykhrij S.I. Phosphides. in Handbook on the Physics and Chemistry of Rare Earths. Amsterdam: Elsevier Science B.V. 1996. Vol. 23. P. 285–434 (https://doi.org/10.1016/S0168-1273(96)23007-7).
  21. Zhak O., Stoyko S., Babizhetskyy V. et al. Interaction of yttrium with nickel and phosphorus: Phase diagram and structural chemistry. J. Solid State Chem. 2013. Vol. 207. P. 87–93. (https://doi.org/10.1016/j.jssc.2013.09.005).

How to Cite

Zhak O. NEW TERNARY HAFNIUM PHOSPHIDE WITH THE Fe2P CRYSTAL STRUCTURE Proc. Shevchenko Sci. Soc. Chem. Sci. 2019 Vol. LVI. P. 144-151.

Download the pdf