Мykhaylo YATSYSHYN, Viktoriya MAKOGON, Ulyana TSIKO, Оleksandr RESHETNYAK
Ivan Franko National University of Lviv Kyryla and Mefodia Str. 6, 79005 Lviv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2018.53.092
COMPOSITE MATERIALS BASED ON POLYANILINE AND NATURAL MINERALS: SHORT REVIEW. 1. FEATURES OF SYNTHESIS, PROPERTIES AND APPLICATIONS
Synthesis and research of physical and chemical properties of materials based on different polymers and inorganic substances, which have been called hybrid materials for a long time, are an actual scientific problem. A review of the literature on the synthesis problem, the study of physical and chemical properties and the use of composite materials based on polyaniline and natural minerals, such as montmorillonite, bentonite, halosite, glauconite, kaolinite, zeolite, pumice and others was conducted. It is shown that for the synthesis of composite materials – hybrid materials with polyaniline it should first be distinguished from two groups of natural minerals: the first one is a group of silicate minerals, mainly layered silicates, which are part of the bulk of clays and are so-called phyllosilicates, and the second is a group of fossil natural minerals, such as zeolite, pumice, and the like. Such hybrid materials can be either organically inorganic or inorganically organic. Different natural minerals are considered as components of composite materials. The analysis of the literature on methods of preparation of natural minerals for the synthesis of composite materials has been carried out. The methods, conditions and mechanisms of synthesis of composites based on polyaniline and natural minerals have been analyzed. The analysis of electrical conductivity, thermal and mechanical properties of composites based on natural minerals and polyaniline is carried out. Possibilities of application of composite materials on the basis of polyaniline and natural minerals are considered. Analysis of the results on the synthesis and study of the physical and chemical properties of hybrid composites based on natural minerals and polyanillin shows that the nature, size, form and content of a natural mineral on the properties of the hybrid composites obtained are determinant. Elemental composition of natural minerals does not fundamentally affect the properties of composite materials.
Key words: natural minerals, polyaniline, hybrid composites, synthesis, structure, properties, application.
References:
-
1. Hussain F., Hojjati M .I., Okamoto M., Gorga R. E. Review article: polymer-matrix nano-composites,
processing, manufacturing, and application: an overview. J. Compos. Mater. − 2006. − Vol. 40. − P. 1511–1565
(https://doi.org/10.1177/0021998306067321).
2. Utracki L. A., Sepehr M., Boccaleri E. Synthetic, layered nanoparticles for polymeric nanocomposites
(PNCs). Review. Polym. Adv. Technol. − 2007. − Vol. 18. − P. 1–37.
(https://doi.org/10.1002/pat.852).
3. Mittal V. Polymer Layered Silicate Nanocomposites: A Review. Materials. − 2009. − Vol. 2. − P. 992–1057
(https://doi.org/10.3390/ma2030992).
4. Pomogailo A. D. Hybrid Intercalative Nanocomposites. Inorg. Mater. − 2005. − Vol. 41, No. 1. − P. S47–S74
(https://doi.org/10.1007/s10789-005-0318-3).
5. Gerasin V. A., Antipov E. M., Karbushev V. V. et al. New approaches to the development of hybrid
nanocomposites: from structural materials to high-tech applications. Russ. Chem. Rev. − 2013. − Vol. 82, No.
4. − P. 303–332.
(doi:
10.1070/RC2013v082n04ABEH004322).
6. Gomez-Romero P. Hybrid Organic-Inorganic Materials – In Search of Synergic Activity. Adv. Mater. − 2001. −
Vol. 13, No. 3. − P. 163–174 (doi:
10.1002/1521-4095(200102)13:3<163::AID-ADMA163>3.0.CO;2-U).
7. Rao C. N. R., Cheetham A. K., Thirumurugan A. Hybrid inorganic–organic materials: a new family in condensed
matter physics. J. Phys.: Condens. Matter. − 2008. − Vol. 20. − 083202 (21p.)
(https://doi.org/10.1088/0953-8984/20/8/083202).
8. Malinauskas A. Chemical deposition of conducting polymers. Polymer. − 2001. − Vol. 42. Is. 9. − P.
3957–3972 (doi:
10.1016/S0032-3861(00)00800-4)
9. Eftekhari A. Nanostructured Conductive Polymers. Wiley. – 2010. – 810 p. (ISBN 978-0-470-74585-4).
10. Maity A., Biswas M. Recent Progress in Conducting Polymer, Mixed Polymer-Inorganic Hybrid Nanocomposites.
Review. J. Ind. Eng. Chem. − 2006. − Vol. 12, No. 6. − P. 311–351.
11. Makogon V., Yatsyshyn М., Reshetnyak O. Native minerals as a components of composite polyaniline- based
materials. Proc. Shevchenko Sci. Soc. Chem. Sci. − 2017. − Vol. XLVIII. − P. 17–31 (in Ukrainian).
12. Tarasevych Yu. I., Ovcharenko F. D. Adsorption on clay minerals. Kiev: Sci. thought, 1975. 351 p. (in
Ukrainian).
13. Konta J. Clay and man: Clay raw materials in the service of man. Appl. Clay Sci. − 1995. − Vol. 10. − P.
275−335 (doi:
10.1016/0169-1317(95)00029-4)
14. Densakulprasert N., Wannatong L., Chotpattananont D. et al. Electrical conductivity of polyaniline/zeolite
composites and synergetic interaction with CO. Mater. Sci. Eng. B. − 2005. − Vol. 117. − P. 276–282
(https://doi.org/10.1016/j.mseb.2004.12.006).
15. Marins J. A., Giulieri F., Soares B. G., Bossis G. Hybrid polyaniline-coated sepiolite nanofibers for
electrorheological fluid applications. Synth. Met. − 2013. − Vol. 185. − P. 9–16
(doi:
10.1016/j.synthmet.2013.09.037).
16. 16. Pande S., Swaruparani H., Bedre M. D. et al. Synthesis, Characterization and Studies of PANI–MMT
Nanocompoisites. Nanosci. Nanotechnol. − 2012. − Vol. 2, No. 4. − P. 90–98
(https://doi.org/10.5923/j.nn.20120204.01).
17. Soundararajah Q. Y., Karunaratne B. S. B., Rajapakse R. M. G. Montmorillonite polyaniline nanocomposites:
Preparation, characterization and investigation of mechanical properties. Mater. Chem. Phys. − 2009. − Vol.
113. − P. 850–855
(doi:
10.1016/j.matchemphys.2008.08.055).
18. Liu D., Du X., Meng Y. Facile synthesis of exfoliated polyaniline/vermiculite nano-composites. Mater.
Lett. − 2006. − Vol. 60. − P. 1847–1850.
(doi:
10.1016/j.matlet.2005.12.033).
19. Matkovs’kyi O., Pavlyshyn V., Slyvko Ye. Fundamentals of mineralogy of Ukraine. Lviv: Publ. Center Ivan
Franko National University of Lviv, 2009. – 856 p. (in Ukrainian).
20. Kulhánková L., Tokarský J., Peikertová P. et al. Montmorillonite intercalated by conducting polyanilines
. J. Phys. Chem. Sol. − 2012. − Vol. 73. − P. 1530–1533
(https://doi.org/10.1016/j.jpcs.2011.11.043).
21. Zidi R., Bekri-Abbes I., Sdiri N. et al. Electrical and dielectric investigation of intercalated
polypyrrole montmorillonite nanocomposite prepared by spontaneous polymerization of pyrrole into
Fe(III)-montmorillonite. Mater. Sci. Engineer. B. − 2016. − Vol. 212. − P. 14–23
(https://doi.org/10.1016/j.mseb.2016.07.006).
22. Hower J. Some factors concerning the nature and origin of glauconite. Amer. Miner. − 1961. − Vol. 46. −
P. 313–334.
23. Deer W. A., Howie R. A., Zussman J. Rock-forming minerals. Sheet silicates. − 1963. − Vol. 3. − P.
35–41.
24. Bentor Y. K., Kastner M. Notes on the mineralogy and origin of glauconite. J. Sed. Petrol. − 1965. −
Vol. 35. − P. 155–166
(https://doi.org/10.1306/74D71212-2B21-11D7-8648000102C1865D).
25. Buckley H. A., Bevan J. C., Brown K. M. et al. Glauconite and celadonite: two separate mineral species.
Mineral. Mag. − 1978. − Vol. 42. − P. 373–382
(doi:
10.1180/minmag.1978.042.323.08).
26. Yatsyshyn М. М., Grynda Yu. М., Reshetnyak O. V. et al. Physico-chemical properties of the
polyaniline-mineral composites. XVI th international seminar on physics and chemistry of solids. Abstract.
ISPCS’10. Lviv. – 2010. – P. 151.
27. Yatsyshyn М., Grynda Yu., Kun’ko A., Kulyk Yu. Polymerization of aniline in the presence of glauconite.
Visn. Lviv Univ. Ser. Chem. − 2010. – Is. 51, Pt. 2. − P. 395–406 (in Ukrainian).
28. Yatsyshyn М. М., Іl’kiv Z. V., Halamay R. І. et al. A method for purifying glauconite from silica and
other impurities / Patent of Ukraine on the utility model N 86632. Application N u201307148; stated.
06.06.2013 ; publ. 10.01.2014, Bull. N 1/2014 (in Ukrainian).
29. Tokarský J., Kulhánková L., Stýskala V. et al. High electrical anisotropy in hydrochloric acid doped
polyaniline/phyllosilicate nanocomposites: Effect of phyllosilicate matrix, synthesis pathway and pressure.
Appl. Clay Sci. − 2013. − Vol. 80–81. − Р. 126–132
(https://doi.org/10.1016/j.clay.2013.06.029).
30. Letaїef S., Aranda P., Ruiz-Hitzky E. Influence of iron in the formation of conductive polypyrrole-clay
nanocomposites. Appl. Clay Sci. − 2005. − Vol. 28. − P. 183–198
(https://doi.org/10.1016/j.clay.2004.02.008).
31. Dalas E., Vitoratos E., Sakkopoulos S., Malkaj P. Polyaniline/zeolite as the cathode in a novel gel
electrolyte primary dry cell. J. Power Sources. − 2004. − Vol. 128. − P. 319–325
(doi:
10.1016/j.jpowsour.2003.09.062).
32. Bilonizhka P. M. Some aspects of terminology and crystallochemistry of finely dispersed layered silicates
. Notes of the Ukrainian Mineralogical Society. − 2011. − Is. 8. − P. 15–19 (in Ukrainian).
33. Levis S. R., Deasy P. B. Characterisation of halloysite for use as a microtubular drug delivery system.
Inter. J. Pharmaceutics. − 2002. − Vol. 243. − P. 125–134
(doi:
10.1016/S0378-5173(02)00274-0).
34. Luca V., Thomson S. Intercalation and polymerisation of aniline within a tubular aluminosilicate. J.
Mater. Chem. − 2000. − Vol. 10. − P. 2121–2126
(https://doi.org/10.1039/B000741M).
35. Rajapakse R. M. G., Krishantha D. M. M., Tennakoon D. T. B., Dias H. V. R. Mixed-conducting
polyaniline-Fuller’s Earth nanocomposites prepared by stepwise intercalation. Electrochim. Acta. − 2006. −
Vol. 51. − P. 2483-2490
(doi:
10.1016/j.electacta.2005.07.035).
36. Duran N. G., Karakışla М., Aksu L., Saçak M. Conducting polyaniline/kaolinite composite: Synthesis,
characterization and temperature sensing properties. Mater. Chem. Phys. − 2009. − Vol. 118. − P. 93−98
(doi:
10.1016/j.matchemphys.2009.07.009).
37. Tsiko U., Yatsyshyn M., Kulyk Yu. et al. Solid-phase synthesis of polyaniline and kaolin/ polyaniline
composite. Visn. Lviv Univ. Ser. Chem. − 2017. – Is. 58, Pt. 2. − P. 393–405 (in Ukrainian).
38. Wikipedia. https://uk.wikipedia.org/wiki.
39. Lee D., Char K. Thermal degradation behavior of polyaniline in polyaniline/Na+-montmorillonite
nanocomposites. Polym. Degrad. Stabil. − 2002. − Vol. 75. − P. 555–560
(doi:
10.1016/S0141-3910(01)00259-2).
40. Baldissera A. F., Souza J. F., Ferreira C. A. Synthesis of polyaniline/clay conducting nanocomposites.
Synth. Met. − 2013. − Vol. 183. − P. 69–72
(doi:
10.1016/j.synthmet.2013.09.022).
41. Wang J., Iroh J.O., Hall S. Effect of polyaniline-modified clay on the processing and properties of clay
polyimide nanocomposites. Appl. Clay Sci. − 2014. − Vol. 99. − P. 215–219
(https://doi.org/10.1016/j.clay.2014.06.036).
42. Ozdemir E., Lekesiz T. O., Hacaloglu J. Polylactide/organically modified montmorillonite composites;
effects of organic modifier on thermal characteristics. Polym. Degrad. Stabil. − 2016. − Vol. 134. − P.
87–96 (doi:
10.1016/j.polymdegradstab.2016.09.028).
43. Ballav N., Biswas M. High Yield Polymerisation of Aniline and Pyrrole in Presence of Montmorillonite Clay
and Formation of Nanocomposites Thereof. Polymer J. − 2004. Vol. 36, No. 2. − Р. 162–166
(https://doi.org/10.1295/polymj.36.162).
44. Ćirić-Marjanović G., Dondur V., Milojević M. et. al. Synthesis and Characterization of Conducting
Self-Assembled Polyaniline Nanotubes/Zeolite Nanocomposite. Langmuir. − 2009. − Vol. 25. − P. 3122–3131
(https://doi.org/10.1021/la8030396).
45. Abd El-Ghaffar M. A., Youssef A. M., Abd El-Hakim A. A. Polyaniline nanocomposites via in situ emulsion
polymerization based on montmorillonite: Preparation and characterization. Arabian J. Chem. − 2015. − Vol.
8, Is. 6. − P. 771–779
(doi:
10.1016/j.arabjc.2014.01.001).
46. Koksal E., Afsin B., Tabak A., Caglar B. Structural Characterization of Aniline-Bentonite Composite by
FTIR, DTA/TG, and PXRD Analyses and BET Measurement. Spectroscopy Lett. − 2011. − Vol. 44, No. 2. − P. 77–82
(https://doi.org/10.1080/00387010903555953).
47. Li X., Li X., Wang G. Surface modification of diatomite using polyaniline. Mater. Chem. Phys. − 2007. −
Vol. 102. − P. 140–143
(doi:
10.1016/j.matchemphys.2006.11.014).
48. Wang B., Liu C., Yin Y. The Electrorheological Properties of Polyaniline Nanofiber/Kaolinite Hybrid
Nanocomposite. J. Appl. Polym. Sci. − 2013. − P. 1104–1113
(https://doi.org/10.1002/app.39262).
49. Milojević-Rakić M., Janošević A., Krstić J. et al. Polyaniline and its composites with zeolite ZSM-5 for
efficient removal of glyphosate from aqueous solution. Micropor. Mesopor. Mater. − 2013. − Vol. 180. − P.
141–155 (doi:
10.1016/j.micromeso.2013.06.025).
50. Lee D., Char K., Lee S. W., Park Y. W. Structural changes of polyaniline/montmorillonite nanocomposites
and their effects on physical properties. J. Mater. Chem. − 2003. − Vol. 13. − P. 2942–2947
(https://doi.org/10.1039/B303235C).
51. Lin J., Tang Q., Wu J., Sun H. Synthesis, characterization and properties of polyaniline/ expanded
vermiculite intercalated Nanocomposite. Sci. Technol. Adv. Mater. − 2008. − Vol. 9. − P. 025010 (6 p.)
(doi:
10.1088/1468-6996/9/2/025010).
52. Binitha N. N., Sugunan S. Polyaniline/Pillared Montmorillonite Clay Composite Nanofibers. J. Appl.
Polym. Sci. − 2008. − Vol. 107. − P. 3367–3372
(https://doi.org/10.1002/app.27353).
53. Sun X., Long Y., Wang P. et al. Preparation of conducting halloysite/polyaniline coaxial tubular
nanocomposites in the presence of decorating halloysite as in situ dopant. React. Funct. Polym. − 2012. −
Vol. 72. − P. 323–328
(doi:
10.1016/j.reactfunctpolym.2012.03.002).
54. Gupta B., Rakesh A., Melvin A. A. et al. In-situ synthesis of polyaniline coated montmorillonite (Mt) clay
using Fe+3 intercalated Mt as oxidizing agent. Appl. Clay Sci. − 2014. − Vol. 95. − P. 50-54
(https://doi.org/10.1016/j.clay.2014.02.009).
55. Kim B. H., Jung J. H., Joo J. et al. Charge Transport and Structure of Nanocomposites of Polyaniline and
Inorganic Clay. J. Korean Phys. Soc. − 2000. − Vol. 36, No. 6. − P. 366–370.
56. Liu P. Preparation and characterization of conducting polyaniline/silica nanosheet composites. Curr. Op.
Sol. St. Mater. Sci. − 2008. − Vol. 12. − P. 9–13
(doi:
10.1016/j.cossms.2009.01.001).
57. Chang K.-C., Lai M.-C., Peng C.-W. et al. Comparative studies on the corrosion protection effect of
DBSA-doped polyaniline prepared from in situ emulsion polymerization in the presence of hydrophilic
Na+-MMT
and organophilic organo-MMT clay platelets. Electrochim. Acta. − 2006. − Vol. 51. − P. 5645–5653
(doi:
10.1016/j.electacta.2006.02.039).
58. Kong M., Li H., Li L. et al. Effects of oxalic and citric acids on three clay minerals after incubation.
Appl. Clay Sci. − 2014. − Vol. 99. − P. 207–214
(https://doi.org/10.1016/j.clay.2014.06.035).
59. Kaur B., Srivastava R. Simultaneous determination of epinephrine, paracetamol, and folicacid using
transition metal ion-exchanged polyaniline–zeoliteorganic–inorganic hybrid materials. Sens. Actuat. B. −
2015. − Vol. 211. − P. 476–488
(https://doi.org/10.1016/j.snb.2015.01.081).
60. Yoshimoto S., Ohashi F., Ohnishi Y., Nonami T. Synthesis of polyaniline – montmorillonite nanocomposites
by the mechanochemical intercalation method. Synth. Met. − 2004. − Vol. 145. − P. 265–270
(doi:
10.1016/j.synthmet.2004.05.011).
61. Huang J., Moore J., Acquaye H., Kaner R. Mechanochemical Route to the Conducting Polymer Polyaniline.
Macromol. − 2005. − Vol. 38. − P. 317-321
(https://doi.org/10.1021/ma049711y).
62. Tursun A., Zhang X.-G., Ruxangul J. Comparative studies of solid-state synthesized polyaniline doped with
inorganic acids. Mater. Chem. Phys. − 2005. − Vol. 90. − P. 367–372
(doi:
10.1016/j.matchemphys.2004.10.036).
63. Posudievskyi O., Kurys Ya., Pokhodenko V. Electrically conductive conjugated polymers and the
mechanochemical method of their obtaining. Patent of Ukraine, publ. 10. 07. 2007. Bull. Vol.10. 2007. (in
Ukrainian).
64. Yatsyshyn M., Tciko U., Kulyk Y., Pandyak N. Properties of the mechanochemically and chemically
synthesized kaoline/polyaniline composites. Visn. Lviv Univ. Ser. Chem. − 2016. − Is. 57, Pt 2. − P. 451–461
(in Ukrainian).
65. Uma S. Polymerization of aniline in layered perovskites / S. Uma, J Gopalakrishnan. Mater. Sci.
Engineer. − 1995. − Vol. B34. − P. 175–179
(doi:
10.1016/0921-5107(95)01235-4).
66. Gospodinova N., Terlemezyan L. Conducting polymers prepared by oxidative polymerization: Polyaniline.
Prog. Polym. Sci. − 1998. − Vol. 23, Is. 8. − P. 1443−1484
(doi:
10.1016/S0079-6700(98)00008-2).
67. Feng B., Su Y., Song J., Kong K. Electropolymerization of polyaniline/montmorillonite nanocomposite. J.
Mater. Sci. Lett. − 2001. − Vol. 20. − P. 293−294
(https://doi.org/10.1023/A:1006722302859).
68. Liu X., Cheng C., Xiao C. et al. Polyaniline (PANI) modified bentonite by plasma technique for U(VI)
removal from aqueous solution. Appl. Surf. Sci. − 2017. − Vol. 411. − P. 331–337
(doi:
10.1016/j.apsusc.2017.03.095).
69. Attia N. F., Menemparabath M. M., Arepalli S., Geckeler K. E. Inorganic nanotube composites based on
polyaniline: Potential room-temperature hydrogen storage materials. Inter. J. Hydrog. Energ. − 2013. − Vol.
38. − P. 9251–9262
(doi:
10.1016/j.ijhydene.2013.05.049).
70. Bober P., Stejskal J., Špírková M. et al. Conducting polyaniline–montmorillonite composites. Synth. Met.
− 2010. − Vol. 160. − P. 2596–2604
(doi:
10.1016/j.synthmet.2010.10.010).
71. Vitoratos E., Sakkopoulos S., Dalas E. et al. D.C. conductivity and thermal aging of conducting
zeolite/polyaniline and zeolite/polypyrrole blends. Curr. Appl. Phys. − 2007. − Vol. 7. − P. 578–581
(https://doi.org/10.1016/j.cap.2006.12.001).
72. Tierrablanca E., Romero-García J., Roman P., Cruz-Silva R. Biomimetic polymerization of aniline using
hematin supported on halloysite nanotubes. Appl. Catalysis A: General. − 2010. − Vol. 381. − P. 267–273
(doi:
10.1016/j.apcata.2010.04.021).
73. Li X., Wang G., Li X. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ
polymerization method. Appl. Surf. Sci. − 2005. − Vol. 249. − P. 266–270
(doi:
10.1016/j.apsusc.2004.12.001).
74. Zhang L., Wang T., Liu P. Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization.
Appl. Surf. Sci. − 2008. − Vol. 255. − P. 2091–2097
(doi:
10.1016/j.apsusc.2008.06.187).
75. Yılmaz K., Akgoz A., Cabuk M. et al. Electrical transport, optical and thermal properties of
polyaniline–pumice composites. Mater. Chem. Phys. − 2011. − Vol. 130. − P. 956–961
(doi:
10.1016/j.matchemphys.2011.08.017).
76. Tilki T., Karabulut O., Yavuz M. et. al. Irradiation effects on transport properties of polyaniline and
polyaniline/bentonite composite. Mater. Chem. Phys. − 2012. − Vol. 135. − P. 563–568
(doi:
10.1016/j.matchemphys.2012.05.026).
77. Jang D. S., Choi H. J. Conducting polyaniline-wrapped sepiolite composite and its stimuli-response under
applied electric fields. Colloids Surf. A. − 2015. − Vol. 469. − P. 20–28
(doi:
10.1016/j.colsurfa.2015.01.004).
78. Chen L., Zhai Y., Ding H. et al. Preparation, characterization and thermoelectricity of ATT/TiO2/PANI
nano-composites doped with different acids. Composites: Part B. − 2013. − Vol. 45. − P. 111–116
(doi:
10.1016/j.compositesb.2012.02.028).
79. Yatsyshyn M. M., Reshetnyak O. V., Dumanchuk N. Ya. et al. Hybrid mineral-polymeric composite materials on
the basis of the polyaniline and glauconite-silica. Chem. Chem. Technol. − 2013. − Vol. 4. − P. 441-444.
80. Kulhánková L., Tokarský J., Matĕjka V. et al. Electrically conductive and optically transparent
polyaniline/montmorillonite nanocomposite thin films. Thin Solid Films − 2014. − Vol. 562. − P. 319–325
(https://doi.org/10.1016/j.tsf.2014.05.006).
81. Marins J.A., Soares B.G. A facile and inexpensive method for the preparation of conducting
polyaniline–clay composite nanofibers. Synth. Met. − 2012. − Vol. 162. − P. 2087–2094
(doi:
10.1016/j.synthmet.2012.10.015).
82. Makogon V., Semenyuk Yu., Yatsyshyn M. et al. Thermal stability of the hybrid composites based on
glauconite doped with polyaniline in oxalic acid. Proc. Shevchenko Sci. Soc. Chem. Sci. − 2016. − Vol. XLIV.
− P. 57–69. (in Ukrainian).
83. Makogon V., Maksymiv N., Yatsyshyn М. et al. The properties of the glauconite/polyaniline composites doped
with the malic acid. Visn. Lviv Univ. Ser. Chem. − 2017. − Is. 58, Pt. 2. − P. 412–424. (in Ukrainian).
84. Yatsyshyn М. М., Makogon V. М., Stetsiv Yu. A., Demchenko P. Yu. Conductive magnetic composite material
based on polyaniline and glauconite / Patent of Ukraine on the utility model Vol.114301. Request N u201607810
15.07.2016. Publ. 10.03.2017. Bul. Vol. 5. (in Ukrainian).
85. Yatsyshyn M., Saldan I., Milanese C. et al. Properties of Glauconite/Polyaniline Composite Prepared in
Aqueous Solution of Citric Acid. J. Polym. Environm. − 2016. − Vol. 24. − P. 196–205
(https://doi.org/10.1007/s10924-016-0763-x).
86. Yatsyshyn M., Makogon V., Reshetnyak O. et al. Properties of the hybrid glauconite/polyaniline composites
synthesized in the aqueous citrate acid solutions. Chem. Chem. Technol. − 2016. − Vol. 4. − P. 429-435
(https://doi.org/10.23939/chcht10.04.429).
87. Kim J. W., Kim S. G., Choi H. J., Jhon M. S. Synthesis and electrorheological properties of
polyaniline-Na+montmorillonite suspensions. Macromol. Rapid Commun. − 1999. − Vol. 20. − P. 450–452
(https://doi.org/10.1002/(SICI)1521-3927(19990801)20:8<450::AID-MARC450>3.0.CO;2-N).
88. Kim B. H., Jung J. H., Kim J. W. et al. Effect of dopant and clay on nanocomposites of polyaniline (PAN)
intercalated into Na+ montmorillonite (Na+-MMT). Synth. Met. − 2001. − Vol. 121. − P. 1311–1312
(doi:
10.1016/S0379-6779(00)01288-1).
89. Kim B. H., Jung J. H., Kim J. W. et al. Physical characterization of
polyaniline–Na+–montmorillonite
intercalated by emulsion polymerization. Synth. Met. − 2001. − Vol. 117. − P. 115–118
(doi:
10.1016/S0379-6779(00)00549-X).
90. Choi H. J., Kim J. W., Joo J., Kim B. H. Synthesis and electrorheology of emulsion intercalated
PANI-clay nanocomposite. Synth. Met. − 2001. − Vol. 121. − P. 1325–1326
(doi:
10.1016/S0379-6779(00)00619-6).
91. Sudha J. D., Reena V. L. Structure – Directing Effect of Renewable Resource Based Amphiphilic Dopants on
the Formation of Conducting Polyaniline-Clay Nanocomposite. Macromol. Symp. − 2007. − Vol. 254. − P.
274–283
(https://doi.org/10.1002/masy.200750841).
92. Sudha J. D., Sivakala S., Prasanth R. et al. Development of electromagnetic shielding materials from the
conductive blends of polyaniline and polyaniline-clay nanocomposite-EVA: Preparation and properties.
Compos. Sci. Technol. − 2009. − Vol. 69. − P. 358-364
(doi:
10.1016/j.compscitech.2008.10.026).
93. Hosseini M. G., Jafari M., Najjar R. Effect of polyaniline–montmorillonite nanocomposite powders
addition on corrosion performance of epoxy coatings on Al 5000. Surf. Coat. Technol. − 2011. − Vol. 206. −
P. 280–286 (https://doi.org/10.1016/j.surfcoat.2011.07.012).
94. Colomban Ph., Efremova A., Regis A. et al. Polymerized aniline in porous amorphous frameworks: a
vibrational and conductivity study. Micropor. Mater. − 1995. − Vol. 4. − P. 65–81. (https://doi.org/10.1016/0927-6513(94)00085-A).
95. Murali R. S., Padaki M., Matsuura T. et al. Polyaniline in situ modified halloysite nanotubes
incorporated asymmetric mixed matrix membrane for gas separation. Separat. Purificat. Technol. − 2014. −
Vol. 132. − P. 187–194 (https://doi.org/10.1016/j.seppur.2014.05.020).
96. Anaissi F. J., Demets G. J.-F., Timm R. A., Toma H. E. Hybrid polyaniline/bentonite-vanadium(V) oxide
nanocomposites. Mater. Sci. Eng. A. − 2003. − Vol. 347. − P. 374-381
(https://doi.org/10.1016/S0921-5093(02)00618-4).
97. Makogon V., Yatsyshyn М., Demchenko P. Glauconite/polyaniline composites doped hydrochloric acid.
Visn. Lviv Univ. Ser. Chem. − 2016. − Is. 57. Pt 2. − P. 471–483 (in Ukrainian).
98. Makogon V., Yatsyshyn М., Demchenko P. et al. The properties of composites of polyaniline/ glauconite
synthesized in aqueous solution of sulfuric acid. Visn. Lviv Univ. Ser. Chem. − 2015. − Is. 56. Pt. 2. −
P. 360–370 (in Ukrainian).
99. Yatsyshyn М., Lytvyn Yu., Makogon V. et al. Synthesis and properties of composites of glauconite/ doped
citrate acid polyaniline. Proc. Shevchenko Sci. Soc. Chem. Sci. − 2015. − Vol. XLII. − P. 72–85. (in
Ukrainian).
100. Lee H. M., Choi H. J. Synthesis and characterization of polyaniline–Na+–montmorillonite
nanocomposite
by microemulsion polymerization. Mol. Cryst. Liq. Cryst. − 2007. − Vol. 463. − P. 221–225
(https://doi.org/10.1080/15421400601027957).
101. Song D. H., Lee H. M., Lee K.-H., Choi H. J. Intercalated conducting polyaniline-clay nanocomposites
and their electrical characteristics. J. Phys. Chem. Solids. − 2008. − Vol. 69. − P. 1383–1385
(https://doi.org/10.1016/j.jpcs.2007.10.055).
102. Semakov A. V., Shabeko A. A., Kiseleva S. G. et al. Anisotropic Electroconducting Polymer–Silicate
Composites Based on Polyaniline. Polym. Sci. Ser. B. − 2010. − Vol. 52. No. 1–2. − P. 91–100
(https://doi.org/10.1134/S156009041001015X).
103. Oyharcabal M., Olinga T., Foulc M.-P., Vigneras V. Polyaniline/clay as nanostructured conductive filler
for electrically conductive epoxy composites. Influence of filler morphology, chemical nature of reagents,
and curing conditions on composite conductivity. Synth. Met. − 2012. − Vol. 162. Is. 7-8. − P. 555–562
(doi:
10.1016/j.synthmet.2012.02.011).
104. Wijeratne W. M. K. T., Rajapakse R. M. G., Wijeratne S., Velauthamurty K. Thermal properties of
montmorillonite–polyaniline nanocomposites. J. Composite Mater. − 2011. − Vol. 46. No. 11. − P. 1335–1343
(https://doi.org/10.1177/0021998311418264).
105. Salahuddin N., Ayad M. M., Ali M. Synthesis and Characterization of Polyaniline–Organoclay
Nanocomposites. J. Appl. Polym. Sci. − 2008. − Vol. 107. − P. 1981–1989
(https://doi.org/10.1002/app.27180).
106. Chae H. S., Zhang W. L., Piao S. H., Choi H. J. Synthesized palygorskite/polyaniline nanocomposite
particles by oxidative polymerization and their electrorheology. Appl. Clay Sci. − 2015. − Vol. 107. − P.
165–172 (https://doi.org/10.1016/j.clay.2015.01.018).
107. Esmer K. Electrical conductivity and dielectric behaviour of modified sepiolite clay. Appl. Clay Sci.
− 2004. − Vol. 25. − P. 17–22 (https://doi.org/10.1016/S0169-1317(03)00159-5).
108. Joussein E., Petit S., Churchman J. et al. Halloysite clay minerals – a review. Clay Miner. − 2008. −
Vol. 40. − P. 383–426 (https://doi.org/10.1180/0009855054040180).
109. White R. D., Bavykin D. V., Walsh F. C. The stability of halloysite nanotubes in acidic and alkaline
aqueous suspensions. Nanotechnol. − 2012. − Vol. 23. − P. 065705
(https://doi.org/10.1088/0957-4484/23/6/065705).
110. Serzhantov V. G., Skidanov E. V., Gorokhovsky A. V. Complex granular nanosorbent. Patent for
invention RU No 2429906. request. 29.12.2009. Publ. 27.09.2011. (in Russian).
111. Yang C., Liu P. Core-shell attapulgite@polypyrrole composite with well-defined corn cob-like morphology
via self-assembling and in situ oxidative polymerization. Synth. Met. − 2009. − Vol. 159. No. 19–20. − P.
2056–2062
(https://doi.org/10.1016/j.synthmet.2009.07.022).
112. Li X., Bian C., Chen W. et al. Polyaniline on surface modification of diatomite: a novel way to obtain
conducting diatomite fillers. Appl. Surf. Sci. − 2003. − Vol. 207. − P. 378–383
(https://doi.org/10.1016/S0169-4332(03)00010-2).
113. Korkuna O., Leboda R., Skubiszewska-Zieba J. et al. Structural and physicochemical properties of
natural zeolites: clinoptilolite and mordenite. Micropor. Mesopor. Mater. − 2006. − Vol. 87. − P. 243–254
(https://doi.org/10.1016/j.micromeso.2005.08.002).
114. Olad A., Naseri B. Preparation, characterization and anticorrosive properties of a novel
polyaniline/clinoptilolite nanocomposite. Progr. Org. Coat. − 2010. − Vol. 67. − P. 233–238
(https://doi.org/10.1016/j.porgcoat.2009.12.003).
115. Ma X., Xu H., Li G. et al. Gas-Response Studies of Polyaniline Composite Film Containing Zeolite to
Chemical Vapors. Macromol. Mater. Eng. − 2006. − Vol. 291. − P. 1539–1546
(https://doi.org/10.1002/mame.200600234).
116. Shyaa A. A., Hasan O. A., Abbas A. M. Synthesis and characterization of polyaniline/zeolite
nanocomposite for the removal of chromium(VI) from aqueous solution. J. Saudi Chem. Soc. − 2012. − Vol.
19. − P. 101–107 (https://doi.org/10.1016/j.jscs.2012.01.001).
117. Enzel P., Bein T. Inclusion of Polyanlline Filaments in Zeolite Molecular Sieves. J. Phys. Chem. −
1989. − Vol. 93. − P. 6270–6272 (https://doi.org/10.1021/j100354a004).
118. Frisch H. L., Song H., Ma J. et al. Antiferromagnetic pairing in polyaniline salt–zeolite
nanocomposites. J. Phys. Chem. B. − 2001. − Vol. 105. − P. 11901–11905 (https://doi.org/10.1021/jp012278z).
119. Tsiko U., Yatsyshyn М., German N. et al. Comparative analysis of the properties of mechanochemically
and chemically synthesized samples of polyaniline and zeolite / polyaniline composites. Visn. Lviv Univ.
Ser. Chem. − 2018. − Is. 59, Pt. 2 – Р. 363–376.
(https://doi.org/10.30970/vch.5902.363) (in Ukrainian).
120. Gök A., Göde F., Türkaslan B. E. Synthesis and characterization of polyaniline/pumice (PAn/Pmc)
composite. Mater. Sci. Engineer. − 2006. − Vol. B 133. − P. 20–25
(https://doi.org/10.1016/j.mseb.2006.04.040).
121. Stejskal J., Sapurina I. Polyaniline: thin films and colloidal dispersions (IUPAC technical report).
Pure Appl. Chem. − 2005. − Vol. 77. − P. 815–826
(https://doi.org/10.1351/pac200577050815).
122. Sapurina I., Stejskal J. The mechanism of the oxidative polymerization of aniline and the formation of
supramolecular polyaniline structures. Polym. Inter. − 2008. − Vol. 57. − P. 1295–1325
(https://doi.org/10.1002/pi.2476).
123. Yatsyshyn М., Koval’chuk Eu. Polyaniline: chemical synthesis, mechanism of reactions, structure and
properties, doping. Proc. Sevchenko Sci. Soc. Chem. Biochem. − 2008. − Vol. 21. − P. 87–102 (in
Ukrainian).
124. Yatsyshyn М., Grynda Yu., Pandyak N. Investigation of the kinetics of formation of polyaniline
suspensions in aqueous and aqueous-alcohol solutions of sulfate acid. Visn. Lviv Univ. Ser. Chem. − 2009.
− Is. 50. − P. 286–293. (in Ukrainian).
125. Stejskal J., Kratochvil P., Spirkova M. Accelerating effect of some cation radicals on the
polymerization of aniline. Polymer. − 1995. − Vol. 36. No. 21. − P. 4135–4140
(https://doi.org/10.1016/0032-3861(95)90996-F).
126. Mazeikiene R., Malinauskas A. Deposition of polyaniline on glass and platinum by autocatalytic
oxidation of aniline with dichromate. Synth. Met. − 2000. − Vol. 108. − P. 9–14
(https://doi.org/10.1016/S0379-6779(99)00172-1).
127. Liao C., Gu M. Electroless deposition of polyaniline film via autocatalytic polymerization of aniline
. Thin Solid Films − 2002. − Vol. 408. − P. 37–42 (https://doi.org/10.1016/S0040-6090(02)00066-4).
128. Bekri-Abbes I., Srasra E. Solid-state synthesis and electrical properties of
polyaniline/Cu-montmorillonite nanocomposite. Mater. Res. Bull. − 2010. − Vol. 45. − P. 1941–1947
(https://doi.org/10.1016/j.materresbull.2010.08.012).
129. Kazim S., Ahmad S., Pfleger J. et al. Polyaniline–sodium montmorillonite clay nano-composites: effect
of clay concentration on thermal, structural, and electrical properties. J. Mater. Sci. − 2012. − Vol. 47.
− P. 420–428 (https://doi.org/10.1007/s10853-011-5815-y).
130. Feng X. M., Yang G., Liu Y. et al. Synthesis of polyaniline/MCM-41 composite through surface
polymerization of aniline. J. Appl. Polym. Sci. − 2006. − Vol. 101. − P. 2088–2094
(https://doi.org/10.1002/app.23836).
131. Fedorova S., Stejskal J. Surface and Precipitation Polymerization of Aniline. Langmuir − 2002. − Vol.
18. − P. 5630–5632 (https://doi.org/10.1021/la025665o).
132. Stejskal J., Trchovа M., Fedorova S. et al. Surface Polymerization of Aniline on Silica Gel. Langmuir
− 2003. − Vol. 19. − P. 3013–3018 (https://doi.org/10.1021/la026672f).
133. Sapurina I., Fedorova S., Stejskal J. Surface Polymerization and Precipitation Polymerization of
Aniline in the Presence of Sodium Tungstate. Langmuir − 2003. − Vol. 19. − P. 7413–7416
(https://doi.org/10.1021/la034667l).
134. Do Nascimento G. M., Constantino V. R. L., Landers R., Temperini M. L. A. Aniline Poly-merization into
Montmorillonite Clay: A Spectroscopic Investigation of the Intercalated Conducting Polymer. Macromolecules
− 2004. − Vol. 37. − P. 9373–9385
(https://doi.org/10.1021/ma049054+).
135. Tang Z. B., Liu P., Guo J. S., Su Z. X. Preparation of polyaniline/vermiculite clay nanocomposites by
in situ chemical oxidative grafting polymerization. Polym. Int. – 2009. – Vol. 58. – P. 552–556
(https://doi.org/10.1002/pi.2566).
136. Reena V. L., Sudha J. D., Pavithran C. Role of amphiphilic dopants on the shape and properties of
electrically conducting polyaniline/clay nanocomposite. J. Appl. Polym. Sci. − 2009. − Vol. 113. − P.
4066–4076 (https://doi.org/10.1002/app.30525).
137. Kim B.-H., Jung J.-H., Hong S.-H. et al. Nanocomposite of Polyaniline and Na+−Montmorillonite Clay.
Macromolecules − 2002. − Vol. 35. − P. 1419–1423
(https://doi.org/10.1021/ma010497c).
138. Yang S. M., Chen K. H. Synthesis of polyaniline-modified montmorillonite nanocomposite. Synth. Met. −
2003. − Vol. 135–136. − P. 51–52 (https://doi.org/10.1016/S0379-6779(02)00654-9).
139. Yoshimoto S., Ohashi F., Kameyama T. Simple Preparation of Sulfate Anion-Doped Polyaniline-Clay
Nanocomposites by an Environmentally Friendly Mechanochemical Synthesis Route. Macromol. Rapid Commun. −
2004. − Vol. 25. − P. 1687–1691 (https://doi.org/10.1002/marc.200400299).
140. Cole K. C. Use of Infrared Spectroscopy To Characterize Clay Intercalation and Exfoliation in Polymer
Nanocomposites. Macromol. − 2008. − Vol. 41. − P. 834–843
(https://doi.org/10.1021/ma0628329).
141. Sun F., Pan Y., Wang J. et al. Synthesis of Conducting Polyaniline-Montmorillonite Nanocomposites via
Inverse Emulsion Polymerization in Supercritical Carbon Dioxide. Polym. Comp. − 2010. − Vol. 31. − P.
163–162 (https://doi.org/10.1002/pc.20783).
142. Piromruen P., Kongparakul S., Prasassarakich P. Synthesis of polyaniline/montmorillonite nanocomposites
with an enhanced anticorrosive performance. Prog. Org. Coat. − 2014. − Vol. 77. Is. 3. − P. 691–700
(https://doi.org/10.1016/j.porgcoat.2013.12.007).
143. Pramanik S., Bharali P., Konwar B. K., Kar N. Аntimicrobial hyperbranched poly-(esteramide)/polyaniline
nanofiber modified montmorillonite nanocomposites. Mater. Sci. Engineer. C. − 2014. − Vol. 35. − P. 61–69
(https://doi.org/10.1016/j.msec.2013.10.021).
144. Navarchian A. H., Joulazadeh M., Karimi F. Investigation of corrosion protection performance of epoxy
coatings modified by polyaniline/clay nanocomposites on steel surfaces. Progr. Org. Coat. − 2014. − Vol.
77. − P. 347–353
(https://doi.org/10.1016/j.porgcoat.2013.10.008).
145. Mac Diarmid A. G., Epstein A. J. Polyanilines: a novel class of conducting polymers. Faraday Discuss.
Chem. Soc. − 1989. − Vol. 88. − P. 317–332
(https://doi.org/10.1039/DC9898800317).
146. Kalaivasan N., Shafi S. S. Enhancement of corrosion protection effect in mechanochemically synthesized
Polyaniline/MMT clay nanocomposites. Arabian J. Chem. – 2012
(https://doi.org/10.1016/j.arabjc.2012.06.018).
147. Mardic Z., Rokovic M. K. Polyaniline as cathodic material for electrochemical energy sources: The role
of morphology. Electrochim Acta. − 2009. − Vol. 54. No. 10. − P. 2941–2950
(https://doi.org/10.1016/j.electacta.2008.11.002).
148. Ćirić-Marjanović G. Recent advances in polyaniline research: Polymerization mechanisms, structural
aspects, properties and applications. Synth. Met. − 2013. − Vol. 177. − P. 1–47
(https://doi.org/10.1016/j.synthmet.2013.06.004).
149. Li X., Li X., Dai N., Wang G. Large-area fibrous network of polyaniline formed on the surface of
diatomite. Appl. Surf. Sci. − 2009. − Vol. 255. − P. 8276–8280
(https://doi.org/10.1016/j.apsusc.2009.05.101).
150. Zhang Z., Wan M., Wei Y. Highly Crystalline Polyaniline Nanostructures Doped with Dicarboxylic Acids.
Adv. Funct. Mater. − 2006. − Vol. 16. − P. 1100–1104
(https://doi.org/10.1002/adfm.200500636).
151. Zhang Z., Wei Z., Wan M. Nanostructures of Polyaniline Doped with Inorganic Acids. Macromol. − 2002.
− Vol. 35. − P. 5937–5942 (https://doi.org/10.1021/ma020199v).
152. Raut B. T., Chougule M. A., Ghanwat A. A. et al. Polyaniline-CdS nanocomposites: effect of camphor
sulfonic acid doping on structural, microstructural, optical and electrical properties. J. Mater. Sci.
Mater. Electron. − 2012. − Vol. 23. − P. 2104–2109
(https://doi.org/10.1007/s10854-012-0708-7).
153. Basavaraja C., Kim J. K., Thinh P. X., Huh D. S. Characterization and DC electrical conductivity of the
composite films containing polyaniline-carboxymethyl cellulose. Polym. Comp. − 2012. − Vol. 33. − P.
1541–1548 (https://doi.org/10.1002/pc.22289).
154. Olad А., Rashidzadeh A. Preparation and anticorrosive properties of PANI/Na-MMT and PANI/O-MMT
nanocomposites. Progr. Org. Coat. − 2008. − Vol. 62. − P. 293–298
(https://doi.org/10.1016/j.porgcoat.2008.01.007).
155. De León-Almazan C. M., Estrada-Moreno I. A., Páramo-García U., Rivera-Armenta J. L. Polyaniline/clay
nanocomposites. A comparative approach on the doping acid and the clay spacing technique. Synth. Met. −
2018. − Vol. 236. − P. 61–67
(https://doi.org/10.1016/j.synthmet.2018.01.006).
156. Suckeveriene R. Y., Zelikman E., Mechrez G. et al. Synthesis of Hybrid Polyaniline/Carbon Nanotube
Nanocomposites by Dynamic Interfacial Inverse Emulsion Polymerization Under Sonication. J. Appl. Polym.
Sci. − 2011. − Vol. 120 − P. 676–682
(https://doi.org/10.1002/app.33212).
157. Zhang Z., Han Y., Li T. et al. Polyaniline/montmorillonite nanocomposites as an effective flame
retardant and smoke suppressant for polystyrene. Synth. Met. − 2016. − Vol. 221. − P. 28–38
(https://doi.org/10.1016/j.synthmet.2016.10.009).
158. Zhang Z., Wan M. Nanostructures of polyaniline composites containing nano-magnet. Synth. Met. − 2003.
− Vol. 132. − P. 205–212 (https://doi.org/10.1016/S0379-6779(02)00447-2).
159. Yatsyshyn M. M, Grynda Yu. M., Kun'ko A. С. et al. Conductive magnetic composite material based on
polyaniline. Patent of Ukraine, publ. 23.12.2010. Bul. Vol.18. 2011 (in Ukrainian).
160. Yatsyshyn M. M, Kovalchuk Ye. P., Turba Z. B. et al. Magnetic, conductive composite material based on
polyaniline and glauconite-silica. Patent of Ukraine, publ. 11.07.2012. Bul. Vol. 6. 2013 (in
Ukrainian).
161. Liu B.-T., Syu J.-R., Wang D.-H. Conductive polyurethane composites containing polyaniline-coated
nano-silica. J. Colloid Interface Sci. − 2013. − Vol. 393. − P. 138–142
(https://doi.org/10.1016/j.jcis.2012.11.028).
162. Ivan A., Tanczos S., Dorca O. et al. Compozite zeolite-polyaniline membrane material for water
treatement. U.P.B. Sci. Bull. Series B. – 2013. − Vol. 75. Is. 3. − P. 53–64.
163. Tallman D. E., Spinks G., Dominis A., Wallace G. G. Electroactive conducting polymers for corrosion
control. P.1. General introduction and a review of non-ferrous metals. J. Solid State Electrochem. − 2002.
− Vol. 6. − P. 73–84 (https://doi.org/10.1007/s100080100212).
164. Spinks G. M., Dominis A. G., Wallace G. G., Tallman D. E. Electroactive conducting polymers for
corrosion control. P. 2. Ferrous metals. J. Solid State Electrochem. − 2002. − Vol. 6. − P. 85–100
(https://doi.org/10.1007/s100080100211).
165. Zhang Y., Shao Y., Zhang T. et al. High corrosion protection of a polyaniline/organophilic
montmorillonite coating for magnesium alloys. Progr. Org. Coat. − 2013. − Vol. 76. − P. 804–811
(https://doi.org/10.1016/j.porgcoat.2013.01.008).
166. Reshetnyak О. V., Yatsyshyn М. M. Chapter 8. Corrosion Protection of Aluminum and Al-Based Alloys by
Polyaniline and Its Composites. Computational and Experimental Analysis of Functional Materials /
Oleksandr V. Reshetnyak, Gennady E. Zaikov (Eds.) [Series: AAP Research Notes on Polymer Engineering Science
and Technology]. - Toronto, New Jersey: Apple Academic Press, CRC Press (Taylor & Francis Group). 2017. P.
287-329 (ISBN 978-1-77188-342-9). (https://doi.org/10.1201/9781315366357-8).
167. Yeh J.-M., Liou S.-J., Lai C.-Y., Wu P.-C. Enhancement of Corrosion Protection Effect in Polyaniline
via the Formation of Polyaniline−Clay Nanocomposite Materials. Chem. Mater. − 2001. − Vol. 13. − P.
1131–1136 (https://doi.org/10.1021/cm000938r).
168. Lim Y. T., Park J. H., Park O. O. Improved electrorheological effect in polyaniline nanocomposite
suspensions. J. Colloid Interface Sci. − 2002. − Vol. 245. − P. 198–203
(https://doi.org/10.1006/jcis.2001.7983).
169. Ryabchenko K. V, Janovskaya E. S., Thortych V. A, Kichryuk O. Yu. Adsorption properties of silica gel
from in situ immobilized polyaniline in relation to anionic forms Cr (VI), Mo (VI), W (VI) та V (V). Vopr.
him. and him. Technol. − 2011. − Vol. 6. − P. 167−172 (in Ukrainian).
170. Malkaj P., Dalas E., Vitoratos E., Sakkopoulos S. pH Electrodes Constructed From Polyaniline/zeolite
and Polypyrrole/zeolite Conductive Blends. J. Appl. Polym. Sci. − 2006. − Vol. 101. − P. 1853–1856
(https://doi.org/10.1002/app.23590).
171. Yatsyshyn М., Makogon V., Tsiko U., Reshetnyak О. Сomposite materials based on polyanylinе and natural
minerals: Short review. 2. Structure and morphology. Visn. Lviv Univ. Ser. Chem. − 2018. − Is. 59, Pt. 2.
– Р. 512–523. (https://doi.org/10.30970/vch.5902.512). (in Ukrainian).
How to Cite
Yatsyshyn М., Makogon V., Tsiko U., Reshetnyak О. COMPOSITE MATERIALS BASED ON POLYANILINE AND NATURAL MINERALS: SHORT REVIEW. 1. FEATURES OF SYNTHESIS, PROPERTIES AND APPLICATIONS Proc. Shevchenko Sci. Soc. Chem. Sci. 2018 Vol. LIII. P. 92-131.
Download the pdf