PROCEEDINGS OF THE SHEVCHENKO SCIENTIFIC SOCIETY

Chemical Sciences

Архів / Том LIII 2018

Roman PETRYSHYN, Zinovy YAREMKO

Ivan Franko National University of Lviv, Doroshenka Str., 41, 79000 Lviv, Ukraine

DOI: https://doi.org/10.37827/ntsh.chem.2018.53.081

THE INFLUENCE OF SURFACTANTS AND PH OF ENVIRONMENT ON THE ELECTRO-SURFACE PROPERTIES OF AQUEOUS SUSPENSION OF TITANIUM DIOXIDE

To regulate the electro-surface properties of aqueous suspensions of amphoteric oxides and their aggregative stability, changes in the pH of the medium and the addition of surfactants are often used. In this work, the effect of two surfactants: anionic – sodium dodecylbenzene sulfonate and cationic – benzethonium chloride on the electrical properties of aqueous suspensions of titanium dioxide of rutile modification in a wide range of pH solutions has been studied. The investigated titanium dioxide powder with an average particle diameter of 0.23 ± 0.03 μm was modified with inorganic oxides (4% Al2O3 and 2% SiO2) and grafted organic groups to provide the necessary properties and adjust the hydrophilic-lipophilic balance. Solutions of surfactants and suspensions were prepared in bidistilled water with a specific electrical conductivity of no more than 0.27 mS/m. The acid-base balance was varied by adding corresponding volumes of HCl or KOH solutions. It is shown that the electro-surface properties of titanium dioxide suspensions depend on both the pH of the medium and the adsorption of surfactants, which in turn depends on the pH of the medium. The cumulative effect of the physico-chemical processes occurring in suspensions of titanium dioxide was estimated by the difference in pH of suspensions made on the basis of aqueous solutions, and the pH of the suspensions made from solutions of surfactants, ΔрН. Such changes in the pH of suspensions in the presents of surfactants in comparison with the pH of suspensions without surfactants can be caused by a series of interconnected physico-chemical processes that can take place both in suspension volume and on solid surfaces of titanium dioxide, namely:
a) ionization of water molecules;
b) hydrolysis of a salt of weak acid and a strong base – sodium dodecylbenzenesulfonate;
c) hydrolysis of a strong acid salt and a weak base – benzethonium chloride;
d) supramolecular formations in solutions of surfactants (micelles);
e) adsorption of surface-active substances and their micelles on a solid surface;
f) adsorption / desorption of hydrogen ions on a solid surface.
The obtained results are in good agreement with modern ideas about the adsorption of ionic surfactants on charged surfaces and show that the adsorption of molecules of surfactants on an identically charged surface is negligible. The value of ΔрН is almost independent of their concentration for benzethonium chloride in the acidic region and sodium dodecylbenzenesulfonate in the alkaline region, and vice versa – the adsorption of surfactant molecules on the opposite charged surface is significant and the value of ΔрН essentially depends on their concentration for benzethonium chloride in the alkaline region and sodium dodecylbenzenesulfonate in the acidic region, respectively.

Key words: oaqueous suspensions, titanium dioxide, electrosurface properties, sodium dodecylbenzenesulfonate, benzethonium chloride, pH of suspension.

References:

    1. Parks G. A. The isoelectric points of solid oxides, solid hydroxides, and hidroxo complex systems. Chem. Rev. – 1965. – Vol. 65. – P. 177–198. (https://doi.org/10.1021/cr60234a002).
    2. Kosmulski M. Isoelectric points and of zero charge of metal(hydr)oxides: 50 years after Parks review. Adv. Colloid Interface Sci. – 2016. – Vol. 238. – P. 1–61. (https://doi.org/10.1016/j.cis.2016.10.005).
    3. Kosmulski M. The pH dependent surface charging and points of zero charge. VII. Update. Adv. Colloid Interface Sci. – 2018. – Vol. 251. – P. 115–138. (https://doi.org/10.1016/j.cis.2017.10.005).
    4. Khalameida S., Skvarek E., Janusz W. et al. Electrokinetic and adsorption properties of different titanium dioxides at the solid/solution interface. Cent. Eur. J. Chem. – 2014. – Vol. 12. – P. 1194–1205 (https://doi.org/10.2478/s11532-014-0568-5).
    5. Tkachenko N. H., Yaremko Z. M., Bellmann C. et al. The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. J. Colloid Interface Sci. – 2006. – Vol. 299. – P. 686–695. (https://doi.org/10.1016/j.jcis.2006.03.008).
    6. Petryshyn R. S., Yaremko Z. M., Soltys M. M. Effects of surfactants and pH of medium on zeta potential and aggregation stability of titanium dioxide suspensions. Colloid J. – 2010. – Vol. 72. – P. 517–522 (https://doi.org/10.1134/S1061933X10040125).
    7. Núñez-Rojas E., Domínguez H. Computational studies on the behavior of Sodium Dodecyl Sulfate (SDS) at TiO2 (rutile)/water interfaces. J. Colloid Interface Sci. – 2011. – Vol. 364. – P. 417–427 (https://doi.org/10.1016/j.jcis.2011.08.069).
    8. Holmes B., Swansen J., Buck K. et al. Investigations of the interaction and phase transfer to a TiO2 surface of water soluble dyes with polyelectrolyte/surfactant complexes using ultraviolet-visible spectroscopy and multivariate least squares analysis. Colloids Surf., A. – 2012. – Vol. 404. – P. 36–46 (https://doi.org/10.1016/j.colsurfa.2012.04.003).
    9. Godinez I. G., Darnault C. J., Khodadoust A. P et al. Deposition and release kinetics of nano-TiO2 in saturated porous media: Effects of solution ionic strength and surfactants. Environ. Pollut. – 2013. – Vol. 174. – P. 106–113 (https://doi.org/10.1016/j.envpol.2012.11.002).
    10. Zhang X., Wang F., Liu B. et al. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir. – 2014. – Vol. 30. – P. 839–845 (https://doi.org/10.1021/la404633p).
    11. Mahata S., Mondal B., Mahata S. S. et al. Chemical modification of titanium isopropoxide for producing stable dispersion of titania nano-particles. Mater. Chem. Phys. – 2015. – Vol. 151. – P. 267–274 (https://doi.org/10.1016/j.matchemphys.2014.11.065).
    12. Vlasova N. N., Martitan O. V., Golovkova L. P. Adsorption of components of nucleic acids on a titanium dioxide surface. Colloid J. – 2015. – Vol. 77. – P. 425–430 (https://doi.org/10.1134/S1061933X15040213).
    13. Marquez A., Berger N., Feine A. et al. Bovine serum akbumin adsorption on TiO2 colloids: the effect of particle agglomeration and surface composition. Langmuir. – 2017. – Vol. 33. – P. 2551–2558 (https://doi.org/10.1021/acs.langmuir.6b03785).
    14. Xu G., Zhang J., Li G., Song G. Effect of complexation on the zeta potential of titanium dioxide dispersions . J. Dispersion Sci. Technol. – 2003. – Vol. 24. – P. 527–535 (https://doi.org/10.1081/DIS-120021807).
    15. Xu G., Xu L., Pan S., Song G. HPAM as a stabilizer of titania suspensions with concentrated electrolyte. Colloids Surf., A. – 2004. – Vol. 232. – P. 49–53 (https://doi.org/10.1016/j.colsurfa.2003.10.006).
    16. Tkachenko N. H., Yaremko Z. M., Bellmann C. Effect of 1-1-charged ions on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. Colloids Surf., A. – 2006. – Vol. 279. – P. 10–19 (https://doi.org/10.1016/j.colsurfa.2005.09.037).
    17. Loosli F., Le Coustumer P., Stoll S. Effect of electrolyte valency, alginate concentration and pH on engineered TiO2 nanoparticle stability in aqueous solution. Sci. Total Environ. – 2015. – Vol. 535. – P. 28–34 (https://doi.org/10.1016/j.scitotenv.2015.02.037).
    18. Rosenholm J. B., Kosmulski M. Peculiar charging effects on titania in aqueous 1: 1, 2: 1, 1: 2 and mixed electrolyte suspensions. Advances in Colloid and Interface Science. – 2012. – Vol. 179. – P. 51–67 (https://doi.org/10.1016/j.cis.2012.06.014).
    19. Singh B. P., Nayak S., Samal S. et al. The role of poly (methacrylic acid) conformation on dispersion behavior of nano TiO2 powder. Appl. Surf. Sci. – 2012. – Vol. 258. – P. 3524–3531 (https://doi.org/10.1016/j.apsusc.2011.11.107).
    20. Петришин Р. С., Яремко З. М., Солтис М .М. Визначення констант іонізації поверхневих гідроксильних груп модифікованого діоксиду титану у його водних суспензіях. Хімія, фізика та технологія поверхні. – 2013. – Т. 4. – С. 165–171 (https://doi.org/10.15407/hftp04.02).
    21. Tugay A.V., Zakordonskiy V.P. Regularities in the association of polymethacrylic acid with benzethonium chloride in aqueous solutions. Russ. J. Phys. Chem. – 2006. – Vol. 80. – P. 909–914 (https://doi.org/10.1134/S0036024406060124).
    22. Rosen M. J. Surfactants and Interfacial Phenomena. – N.Y.: John Wiley & Sons. – 2004. – 454 p (https://doi.org/10.1002/ange.19790910534).

How to Cite

Petryshyn R., Yaremko Z. THE INFLUENCE OF SURFACTANTS AND PH OF ENVIRONMENT ON THE ELECTRO-SURFACE PROPERTIES OF AQUEOUS SUSPENSION OF TITANIUM DIOXIDE Proc. Shevchenko Sci. Soc. Chem. Sci. 2018 Vol. LIII. P. 81-91.

Download the pdf