Yuliia STETSIV, Mykhaylo YATSYSHYN, Oleksandr RESHETNYAK
Ivan Franko National University of Lviv, Kyryla & Mefodiya Str., 6, 79005 Lviv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2018.53.170
OPTICAL рН SENSOR BASED ON POLYANILINE FILMS
The films of polyaniline were deposited by in situ chemical oxidation of 0.05 М aniline monomer by 0.08 М ammonium persulfate in 0.5 M citric acid aqueous solution in the presence of polyethylene terephthalate films. The doping-dedoping-redoping processes of polyaniline films accompanies by change of color of its films from green to violet and to green, respectively, that confirms the formation of the different forms of polyaniline visually. In particular, the synthesized films of polyaniline were green, indicating the formation of polyaniline in the conductive form – of protoned emeraldine salt. The dedoped films of polyaniline (after exposure to alkaline solutions) were blue, which indicates the formation of polyaniline in the non-conducting form of – of emeraldine base. The optical properties of polyaniline on the polyethylene terephthalate substrate have been investigated using ultraviolet-visible and Fourier transform infrared spectroscopy. It is shown the possibility of using the obtained polyaniline films as materials for pH sensors in the wide range 2–12. In particular, the curve of the dependence of the polyaniline film the maximum wavelength (λmax) on the pH of buffer solutions has a sigmoidal character, conditioned both by the dopant, and the nature of the processes occurring in the polyaniline film, caused by doping or de doping of the polyaniline at a given pH value of the medium. The influence of the time of exposure the polyaniline films in buffer solutions on its optical properties was investigated. It was established that the transformation of the emeraldine salt of polyaniline into the emeraldine base of polyaniline depends on the pH of the solution and the time of exposure the samples in buffer solutions. At pH 12.43, the transformation of a polyaniline film from emeraldine salt into emeraldine base occurs very rapidly, whereas in a solution with pH of 1.68 the reverse process is somewhat slower, due to the nature of the ions that take part in them.
Key words: polyaniline, films, рН, optical sensors.
References:
-
1. Reshetnyak О., Коvalyshyn Ya. Application of polyaniline in chemosensorics: modern state. Proc. Shevchenko
Sci. Soc. Chem. Sci. − 2014. − Vol. XL. − P. 70–94 (in Ukrainian).
2. Grummta U.-W., Pron A., Zagorska M., Lefrant S. Polyaniline based optical pH sensor / Anal. Chim. Acta. –
1997. – Vol. 357. – P. 253–259 (https://doi.org/10.1016/S0003-2670(97)00572-2).
3. Lin J. Recent development and applications of optical and fiber-optic pH sensors / Trends Anal. Chem. – 2000.
– Vol. 19, No 9. – P. 541–552. (https://doi.org/10.1016/S0165-9936(00)00034-0)
4. Ayad M. M., Salahuddin N. A., Abou-Seif A. K., Alghaysh M. O. pH sensor based on polyaniline and
aniline–anthranilic acid copolymer films using quartz crystal microbalance and electronic absorption
spectroscopy / Polym. Adv. Technol. – 2008. – Vol. 19. – P. 1142–1148. (https://doi.org/10.1002/pat.1106).
5. Lange U., Roznyatovskaya N. V., Mirsky V. M. Conducting polymers in chemical sensors and arrays. Anal. Chim.
Acta. – 2008. – Vol. 614. – P. 1–26 (https://doi.org/10.1016/j.aca.2008.02.068).
6. Tsyzh B. R., Aksimentyeva O. I., Olhova M. R., Horbenko Yu. Yu. Sensory properties of polyaniline films,
obtained on the optically transparent carriers. Scientific Messenger LNUVMBT named after S.Z. Gzhytskyj. − 2016.
− Vol. 18, No 2. − P. 121−125. (in Ukrainian). (https://doi.org/10.15421/nvlvet6824).
7. Pringsheim E., Terpetschnig E., Swolfbeis O. Optical sensing of pH using thin films of substituted
polyanilines / Anal. Chem. – 1997. – Vol. 357, Is. 3. – P. 247–252. (https://doi.org/10.1016/S0003-2670(97)00563-1).
8. Ferrer-Anglada N., Kaempgen M., Roth S. Transparent and flexible carbon nanotube/ polypyrrole and carbon
nanotube/polyaniline pH sensors / Phys. Stat. Sol. – 2006. – Vol. 243. – P. 3519–3523
(https://doi.org/10.1002/pssb.200669220).
9. Pringsheim E., Zimin D., Wolfbeis O. S. Fluorescent Beads Coated with Polyaniline: A Novel Nanomaterial for
Optical Sensing of pH / Adv. Mater. – 2001. – Vol. 13, No 11. – P. 819–822.
(https://doi.org/10.1002/1521-4095(200106)13:11<819::AID-ADMA819>3.0.CO;2-D).
10. Shkirskaya S., Kolechko M., Kononenko N. Sensor properties of materials based on fluoride polymer F-4SF
films modified by polyaniline / Curr. Appl. Phys. – 2015. – Vol. 15. – P. 1587–1592
(https://doi.org/10.1016/j.cap.2015.09.017).
11. Ayad M. M., Salahuddin N. A., Alghaysh M. O., Issa R. M. Phosphoric acid and pH sensors based on
polyaniline films / Curr. Appl. Phys. – 2010. – Vol. 10. – P. 235–240
(https://doi.org/10.1016/j.cap.2009.05.030).
12. Sotomayora P. T., Raimundo Jr. I. M., Zarbin A. J. G. et al. Construction and evaluation of an optical pH
sensor based on polyaniline±porous Vycor glass nanocomposite. Sensor. Actuat. B-Chem. – 2001. – Vol. 71. – P.
157–162 (https://doi.org/ 10.1016/S0925-4005(00)00726-7).
13. Mello H., Mulato M. Optochemical sensors using electrodeposited polyaniline films:Electrical bias
enhancement of reflectance response. Sensor. Actuat. B-Chem. − 2015. − Vol. 213. − P. 195−201
(https://doi.org/10.1016/j.snb.2015.02.102).
14. Lindfors T., Ivaska A. pH sensitivity of polyaniline and its substituted derivatives / J. Electroanal.
Chem. – 2002. – Vol. 531. – P. 43–52 (https://doi.org/10.1016/S0022-0728(02)01005-7).
15. Vieira N. C. S., Fernandes E. G. R., Faceto A. D. et al. Nanostructured polyaniline thin films as pH
sensing membranes in FET-based devices. Sensor. Actuat. B-Chem. – 2011. – Vol. 160. – P. 312–317
(https://doi.org/10.1016/j.snb.2011.07.054).
16. Jin Z., Su Y., Duan Y. An improved optical pH sensor based on polyaniline. Sensor. Actuat. B-Chem. – 2000.
– Vol. 71. – P. 118–122 (https://doi.org/10.1016/S0925-4005(00)00597-9).
17. Ge Z., Brown C. W., Sun L., Yang S. C. Fiber-optic pH Sensor Based on Evanescent Wave Absorption
Spectroscopy. Anal. Chem. – 1993. – Vol. 65. – P. 2335–2338 (https://doi.org/10.1021/ac00065a028).
18. Stetsiv Yu., Demko C., Yatsyshyn M., Pandyak N. The kinetics of deposition of polyaniline on polyethylene
and polyethylene terephthalate substrates-matrices. Proc. Shevchenko Sci. Soc. Chem. Sci. – 2016. – Vol. XLIV.
– P. 37–49 (in Ukrainian).
19. Stetsiv Yu. Sensor properties of polyaniline films on polyethylene terephthalate substrate. Proc.
Shevchenko Sci. Soc. Chem. Sci. – 2017. – Vol. XLVIII. – P. 107–113 (in Ukrainian).
20. Šeděnková I., Trchová M., Blinova N. V., Stejskal J. In-situ polymerized polyaniline films. Preparation in
solutions of hydrochloric, sulfuric, or phosphoric acid. Thin Solid Films. – 2006. – Vol. 515, Is. 4. – P.
1640–1646 (https://doi.org/10.1016/j.tsf.2006.05.038).
21. Wu W., Pan D., Li Y. et al. Facile fabrication of polyaniline nanotubes using the self-assembly behavior
based on the hydrogen bonding: a mechanistic study and application in high-performance electrochemical
supercapacitor electrode. Electrochim. Acta. – 2015. – Vol. 152. – P. 126−134
(https://doi.org/10.1016/j.electacta.2014.11.130).
22. Duboriz I., Pud A. Polyaniline/poly(ethylene terephthalate) film as a new optical sensing material.
Sensor. Actuat. B-Chem. – 2014. – Vol. 190. – P. 398–407 (https://doi.org/10.1016/j.snb.2013.09.005).
23. Trchová M., Morávková Z., Šeděnková I., Stejskal J. Spectroscopy of thin polyaniline films deposited
during chemical oxidation of aniline. Chem. Pap. – 2012. – Vol. 66, Is. 5. – P. 415–445
(https://doi.org/10.2478/s11696-012-0142-6).
How to Cite
Stetsiv Y., Yatsyshyn M., Reshetnyak O. OPTICAL рН SENSOR BASED ON POLYANILINE FILMS Proc. Shevchenko Sci. Soc. Chem. Sci. 2018 Vol. LIII. P. 170-180.
Download the pdf