Mariia-Olena DANYLIAK, Lidiia BOICHYSHYN
Ivan Franko National University of Lviv Kyryla and Mefodia Str. 6, 79005 Lviv, Ukraine
DOI: https://doi.org/10.37827/ntsh.chem.2018.53.132
FEATURES OF NANOGOMETRY OF THE AMORPHOUS METALLIC ALLOYS SURFACE. BRIEF OVERVIEW.
Surface nanogeometry or roughness is an important characteristic of the amorphous alloys (AMA) and it determines their properties, in particular, wear resistance, contact rigidity, corrosion resistance, and other functional characteristics of the surface. The morphology of the AMA surface depends on many factors: the obtaing method of the amorphous alloys, their composition, or AMA modifications. So, for amorphous alloys there are differences in the surface topography between the contact and the outer side of the amorphous tape due to the thermodynamics of the production process, as well as the roughness of the drum surface and its defects. As a result of thermal annealing of amorphous alloys, surface roughness tends to change. Temperature annealing of amorphous tapes at temperatures below the crystallization temperature contributes to a significant improvement in their properties due to the fact that AMA is thermodynamically unstable and the temperature processing of such alloys is accompanied by structural relaxation aimed at achieving a more stable structure. Nanogeometry of the AMA surface determines their physical and chemical properties: mechanical, magnetic, catalytic, and etc. So, the corrosion resistance strongly depends on the quality of the material's surface. Therefore, in order to increase the corrosion resistance, the AMA should have a smoother surface. The magnetic and catalytic properties of the AMA significantly improve by proper heat treatment, because of controled the surface roughness and size of the nanofaze.
Key words: amorphous metallic alloys, nanocrystalline alloys, surface morphology, roughness.
References:
-
1. Botta W.J., Berger J.E., Kiminami C.S., Roche V., Nogueira R.P., Bolfarini C. Corrosion resistance of
Fe-based amorphous alloys. J. Alloys Compd. – 2013. – Vol. 586. – Р. S105–S110
(https://doi.org/10.1016/j.jallcom.2012.12.130).
2. H.M.M.N. Hennayaka, Ho S. Lee, S. Yi Surface oxidation of the Fe based amorphous ribbon annealed at
temperatures below the glass transition temperature. J. Alloys Compd. – 2015. – Vol. 618. – P. 269–279
(https://doi.org/10.1016/j.jallcom.2014.08.160).
3. Wang G., Huang Zh., Xiao P., Zhu X. Spraying of Fe-based amorphous coating with high corrosion resistance by
HVAF. J. Manuf. Process. – 2016. – Vol. 22. – P. 34–38
(https://doi.org/10.1016/j.jmapro.2016.01.009).
4. Liu T., Shen H., Zhang T., Li W., Qin Ch., Zhang T. Thein fluence of hydrogen absorption on the electrical
resistivity and mechanical properties of Zr-based amorphous alloy. J. Non-Cryst. Solids. – 2013. – Vol. 365. –
P. 27–32
(https://doi.org/10.1016/j.jnoncrysol.2013.01.032).
5. Koga G.Y., Nogueira R.P., Roche V., Yavari A.R., Melle A.K., Gallegod J., Bolfarini C., Kiminami C.S., Botta
W.J. Corrosion properties of Fe–Cr–Nb–B amorphous alloys and coatings. Surf. Coat. Tech. – 2014. – Vol. 254. –
P. 238–243
(https://doi.org/10.1016/j.surfcoat.2014.06.022).
6. Kramer M.J., Mecco H., Dennis K.W., Vargonova E., McCallum R.W., Napolitano R.E. Rapid solidification and
metallic glass formation – Experimental and theoretical limits. J. Non-Cryst. Solids. – 2007. – Vol. 353. – P.
3633–3639
(https://doi.org/10.1016/j.jnoncrysol.2007.05.172).
7. Носенко В.К. Aморфні та нанокристалічні сплави для приладобудування і енерго-ефективних технологій. Вісн. НАН
України. – 2015. – Vol. 4. – C. 68–79. (https://doi.org/10.15407/visn2015.04.068).
8. Ковбуз М., Герцик О., Бойчишин Л., Котур Б. Електрокаталітичні властивості аморфних металевих сплавів на
основі заліза та алюмінію. Праці НТШ. Хімія і Біохімія. – 2013. – Т. 33. – С. 64–74
(http://nbuv.gov.ua/UJRN/pntsh_him_2013_33_9).
9. Öztürk S., Öztürk B., Erdemir F., Usta G. Production of rapidly solidified Cu–Sn ribbons by water jet cooled
rotating disc method. J. Mater. Process. Tech. – 2011. – Vol. 211. – P. 1817–1823
(https://doi.org/10.1016/j.jmatprotec.2011.06.001).
10. Boichyshyn L., Hertsyk O., Kovbuz M., Pereverzieva T., Rudenko O., Nizameiev M. Physico-mechanical
properties of tape and bulk samples of amorphous alloys based on Fe. Chem. Met. Alloys. – 2016. – Vol. 9.– P.
48–53. (https://doi.org/10.30970/cma9.0321).
11. Ковбуз М., Переверзєва Т., Герцик О., Бойчишин Л., Котур Б., Носенко В. Способи одержання нерівноважних
металевих сплавів. Праці НТШ Хім. науки. – 2016. – Т. XLIV. – C. 49–56.
12. Поперенко Л.В., Манько Д.Ю. Прояв локалізованих електронних станів в оптичних властивостях аморфних і
наноструктурованих металевих сплавів. Реєстрація, зберігання і обробка даних. – 2010. – Т. 12(2). – C.
34–42.
13. Назаров Ю.Ф, Шкилько А.М., Тихоненко В.В., Компанеец И.В. Методы исследования и контроля шероховатости
поверхности металлов и сплавов. Физическая инженерия поверхности. – 2007. – Т. 5(3-4). – С. 207–216.
14. Касияненко В.Х., Карбовский В.Л., Артемюк В.А., Карбовская Л.И., Смоляк С.С., Клюенко Л.П., Соболев А.И.,
Лозовой В.Е., Лукьяненко Ю.А., Носенко В.К. Субшероховатость и морфологические особенности поверхности аморфного
сплава Fe82Si4B14 при термической обработке. Наносистеми, наноматеріали,
нанотехнології. – 2015. – Т.13(2). – С.
337–347.
15. Poperenko L.V., Kravets V.G., Lysenko S.I., Vinnichenko K.L. Optical properties of the modified structures
of surface layers of amorphous metallic alloy ribbons. Functional Materials. – 2006. – Vol. 13(1). – P.
154–160.
16. Paluga M., Švec P., Janičkovič D., Mrafko P., Conde C.F. Surface morphology in amorphous Fe–Mo–Cu–B ribbon
system. J. Non-Cryst. Solids. – 2007. – Vol. 353. – P. 2039–2044 (https://doi.org/10.1016/j.jnoncrysol.2007.01.068).
17. Bukowska A., Pietrusiewicz P., Zdrodowska K., Szota M. The surface structural and mechanical properties of
the amorphous Cо22Y54Al24 ribbon. Adv. Sci. Technol. – 2013. – Vol. 7(19). – Р.
1–4
(https://doi.org/10.5604/20804075.1061775).
18. Nabiałek M. Novel, Fe-based functional bulk amorphous materials obtained using suction casting method.
Іnżynieria Materiałowa. – 2014. – Vol. 35(2). P. 171–175.
19. Nabiałek M. Effect of rapid quenching on the copper wheel surface on the microstructure, surface development
and microhardness of Fe86Zr7Nb1Cu1B5 amorphous ribbons.
Іnżynieria Materiałowa. – 2014. – Vol. 35(2). – Р. 176–178.
20. Мудрий С.І., Никируй Ю.С. Кристалізація аморфного сплаву
Fe73,7Nb2,4Cu1,0Si15,5B7,4 під дією лазерного
опромінення поверхні. Фіз. хім. тв. тіла. – 2010. – Т. 11(2). – С. 395–400.
21. Салій Я.П., Рувінський М.А., Никируй Л.І. Особливості розподілу нанооб’єктів на поверхні парофазних
конденсатів напівпровідників IV-VI. Фіз. хім. тв. тіла. – 2016. – Т. 17( 4). – С. 471–475. (https://doi.org/10.15330/pcss.17.4.471-475).
22. Скирта Ю.Б. Вплив відпалу на структуру поверхні плівок Ni2MnGa. Металлофиз. Новейшие технол. – 2016. – T.
38(9). – P. 1179–1194. (https://doi.org/10.15407/mfint.38.09.1179).
23. Su Yu-G., Chen F., Wu Ch.-Y., Chang M.-Hs. Effect of surface roughness of chill wheel on ribbon formation in
the planar flow casting process. J. Mater. Process. Tech. – 2016. – Vol. 229. – P. 609–613
(https://doi.org/10.1016/j.jmatprotec.2015.10.014).
24. Panda A.K., Manimaran M., Mitra A., Basu S. AFM surface morphology and magnetic properties of
nanocrystalline Fe71Nb3.7Cu1Al3Mn0.8Si13.5B7 ribbons. Appl. Surf. Sci. – 2004. – Vol. 235. – P. 475–486
(https://doi.org/10.1016/j.apsusc.2004.03.254).
25. Czaja P., Maziarz W., Przewoźnik J., Żywczak A., Ozga P., Bramowicz M., Kulesza S., Dutkiewicz J. Surface
topography, microstructure and magnetic domains in Al for Sn substituted metamagnetic Ni–Mn–Sn Heusler alloy
ribbons. Intermetallics. –2014. – Vol. 55. – P. 1–8 (https://doi.org/10.1016/j.intermet.2014.07.001).
26. Poperenko L.V., Kravets V.G., Lysenko S.I., Vinnichenko K.L. Optical properties of surface layers of
Co-based amorphous metallic alloys. J. Magn. Magn. Mater. – 2005. – Vol. 290–291. – P. 640–643. (https://doi.org/10.1016/j.jmmm.2004.11.320).
27. Karolus M., Kwapuliński P., Chrobak D., Haneczok G., Chrobak A. Crystallization in Fe76X2B22 (X = Cr, Zr,
Nb) amorphous alloys. J. Mater. Process. Tech. – 2005. Vol. 162–163. – P. 203–208
(https://doi.org/10.1016/j.jmatprotec.2005.02.077).
28. Chrobak A., Chrobak D., Haneczok G., Kwapuliński P., Kwolek Z., Karolus M. Influence of Nb on the first
stage of crystallization in Fe86−xNbxB14 amorphous alloys. Mater. Sci. Eng. A – 2004. – Vol. 382. – P. 401– 406
(https://doi.org/10.1016/j.msea.2004.05.013).
29. Zhang Y.R., Ramanujan R.V. Microstructural observations of the crystallization of amorphous Fe–Si–B based
magnetic alloys. Thin Solid Films. – 2006. – Vol. 505. – P. 97–102
(https://doi.org/10.1016/j.tsf.2005.10.016).
30. Takahara Y., Narita N. EXAFS and Mössbauer studies on local atomic structure in an amorphous Fe–B–Si alloy.
Mater. Sci. Eng. A. – 2001. – Vol. 315. – P. 153–157
(https://doi.org/10.1016/S0921-5093(01)01203-5).
31. Карбовский В.Л., Ильинский А.Г., Лепеева Ю.В., Загородний Ю.А. Исследование процессов структурной релаксации
поверхности аморфного сплава Fe77Si8B15 методом сканирующей туннельной микроскопии и спектроскопии. Металлофиз.
новейшие технол. – 2012. – T. 34(1). – C. 99–110.
32. Zhang Y.R., Ramanujan R.V. The effect of niobium alloying additions on the crystallization of a Fe–Si–B–Nb
alloy. J. Alloys Compd.– 2005. – Vol. 403. – Р. 197–205
(https://doi.org/10.1016/j.jallcom.2005.05.019).
33. Paredes J.I., Prida V.M., Gorria P., Hernando B. AFM investigations during the nanostructure formation in
FeZrB alloys. J. Non-Cryst. Solids. – 2007. – Vol. 353. – P. 883–887
(https://doi.org/10.1016/j.jnoncrysol.2007.01.023).
34. Pon-On W., Winotai P., Tang I-M. Nanocrystallization kinetics of amorphous Fe81B13.5Si3.5C2 magnetic
ribbons. Mater. Res. Bull. – 2008. – Vol. 43. – P. 1004–1015
(https://doi.org/10.1016/j.materresbull.2007.04.023).
35. Han Y., Kong F.L., Han F.F., Inoue A., Zhu S.L., Shalaan E., Al-Marzouki F. New Fe-based soft magnetic
amorphous alloys with high saturation magnetization and good corrosion resistance for dust core application.
Intermetallics. – 2016. – Vol. 76. – P. 18–25
(https://doi.org/10.1016/j.intermet.2016.05.011).
36. Lad’yanov V.I., Eremina M.A., Zhdanova L.I., Lomaeva S.F., Krutkina T.G., Kanunnikova O.M. The effect of the
topography and chemical composition of the surface layers of FeCuNbBSi amorphous alloys on their electrochemical
behavior. Protection of Metals. 2004. – Vol. 40(4). – P. 337–343
(https://doi.org/10.1023/B:PROM.0000036954.17185.c8).
37. Zhang K., Li X. New fracture morphology of amorphous Fe78Si9B13 alloy. Trans. Nonferrous Met. Soc. China.
2008. – Vol. 18. – P. 383–387 (https://doi.org/10.1016/S1003-6326(08)60067-9).
38. Pan D.G., Zhang H.F., Wang A.M., Wang Z.G., Hu Z.Q. Fracture instability in brittle Mg-based bulk metallic
glasses. J Alloys Compd. – 2007. – Vol. 438(1/2). – P. 145−149
(https://doi.org/10.1016/j.jallcom.2006.08.014).
39. Shen J., Liang W.Z., Sun J.F. Formation of nanowaves in compressive fracture of a less-brittle bulk metallic
glass. Appl. Phys. Lett. 2006. – Vol. 89. − P. 121908(1−3)
(https://doi.org/10.1063/1.2356083).
40. Wang G., Wang Y.T., Liu Y.H., Pan M.X., Zhao D.Q., Wang W.H. Evolution of nanoscale morphology on fracture
surface of brittle metallic glass. Appl. Phys. Lett. – 2006. – Vol. 89. P. 121909(1−3)
(https://doi.org/10.1063/1.2354011).
41. Xi X.K., Zhao D.Q., Pan M.X., Wang W.H., Wu Y, Lewandowski J.J. Periodic corrugation on dynamic fracture
surface in a brittle bulk metallic glass. Appl. Phys. Lett. – 2006. – Vol. 89.– P. 181911(1−3)
(https://doi.org/10.1063/1.2374688).
42. Le Anh-T., Chau N., Cuong N.D., The N.D., Kim Ch., Rhee J.-R., Lee H. AFM study and magnetic properties on
nanocrystalline Fe73.5-xCrxSi13.5B9Nb3Au1 (x = 1~5) alloys. J. Magn. – 2006. – Vol. 11(1). – P. 43–50
(https://doi.org/10.4283/JMAG.2006.11.1.043).
43. Mihailov L., Spassovand T., Bojinov M. Effect of microstructure on the electrocatalytic activity for
hydrogen evolution of amorphous and nanocrystalline Zr–Ni alloys. Int. J. Hydrogen Energ. – 2012. – Vol. 37. –
P. 10499–10506
(https://doi.org/10.1016/j.ijhydene.2012.04.042).
44. Sequeira C.A.C., Santos D.M.F., Brito P.S.D. Electrocatalytic activity of simple and modified Fe–P
electrodeposits for hydrogen evolution from alkaline media. Energy. – 2011. – Vol. 36. – P. 847–853
(https://doi.org/10.1016/j.energy.2010.12.030).
45. Rosalbino F., Maccio D., Angelini E., Saccone A., Delfino S. Electrocatalytic properties of Fe–R (R = rare
earth metal) crystalline alloys as hydrogen electrodes in alkaline water electrolysis. J. Alloys Compd. – 2005.
– Vol. 403. – P. 275–282
(https://doi.org/10.1016/j.jallcom.2005.03.075).
46. Brookes H.C., Carruthers C.M., Doyle B. The electrochemical and electrocatalytic behaviour of glassy metals.
J Appl. Electrochem. – 2005. – Vol. 35. – P. 903–913 (https://doi.org/10.1007/s10800-005-4726-5).
How to Cite
Danyliak M.-O., Boichyshyn L. FEATURES OF NANOGOMETRY OF THE AMORPHOUS METALLIC ALLOYS SURFACE BRIEF OVERVIEW Proc. Shevchenko Sci. Soc. Chem. Sci. 2018 Vol. LIII. P. 132-144.
Download the pdf